Nav: Home

Researchers find multiple effects on soil from manure from cows administered antibiotics

October 09, 2019

Use of antibiotics is under heightened scrutiny due to the increased prevalence of antibiotic-resistant pathogens. While the primary focus is on more stringent use of antibiotics in medical settings, the use of antibiotics in the livestock sector is gaining increased attention.

A new study led by Colorado State University and the University of Idaho found multiple effects on soils from exposure to manure from cows administered antibiotics, including alteration of the soil microbiome and ecosystem functions, soil respiration and elemental cycling.

The team also saw changes in how plants allocated carbon below ground and take up nitrogen from the soil. In addition, they observed a decrease in ecosystem carbon use efficiency. This means that when antibiotics are used, less carbon is stored in the soil and more is lost to the atmosphere as carbon dioxide.

The study, "Prolonged exposure to manure from livestock-administered antibiotics decreases ecosystem carbon-use efficiency and alters nitrogen cycling," is published Oct. 9 in Ecology Letters.

Carl Wepking, the lead author and a postdoctoral fellow in the Department of Biology at CSU, said the findings give him "pause" due to the widespread use of antibiotics.

"There's no environment on earth that is free from the effects of antibiotics," he said.

In the U.S., 80 percent of antibiotics are used in livestock production. Globally, livestock antibiotic use is projected to increase by 67 percent by the year 2030.

For the study, researchers analyzed ecosystems exposed to manure from cattle given no antibiotics and manure from cattle given a common antibiotic, as well as a control sample not exposed to manure. All of the manure samples were collected from standard dairy operations maintained by researchers from the Virginia Tech Department of Dairy Science.

Previous research on this topic found researchers injecting antibiotics into manure, then adding it to the soil, or adding raw antibiotics to the soil, said Wepking. The design of this study offered a much more realistic and applicable design.

The research team also used a pulse-chase experiment, a technique to examine elemental cycling, focusing on the manure's effect on whole ecosystems. Scientists took samples over the course of seven days, and found that in the presence of antibiotics, carbon traveled into the above ground plant material, to the roots of the plants, into the soil and respired back out as carbon dioxide much faster than any of the others.

"There was much less of that new carbon retained in the system compared with other soils we sampled," explained Wepking, who also serves as executive director of the Global Soil Biodiversity Initiative, which is housed in the School of Global Environmental Sustainability at CSU.

It's often thought that manure is a helpful fertilizer, and that it adds nutrients and carbon to soil but this benefit might be offset if antibiotics are administered to livestock.

While more research is needed, Wepking said given the study's findings, people may want to consider the effects of antibiotics in the soil when using manure as fertilizer.

"Research is expanding more and more, to look at antibiotic exposure and resistance in agricultural landscapes," said Wepking. "It's already well-documented that overuse of antibiotics is a problem for humans, and that we are running out of effective antibiotics to treat bacterial infections. Based on this research, we have learned that antibiotic use also has environmental effects."
-end-
Co-authors of the study include Michael Strickland and Jane Lucas (University of Idaho); Brian Badgley, John Barrett, Katharine Knowlton and Sarah Shawver (Virginia Tech); Kevan Minick (North Carolina State University); and Partha Ray (University of Reading).

Colorado State University

Related Antibiotics Articles:

Antibiotics: City dwellers and children take the most
City dwellers take more antibiotics than people in rural areas; children and the elderly use them more often than middle-aged people; the use of antibiotics decreases as education increases, but only in rich countries: These are three of the more striking trends identified by researchers of the NRW Forschungskolleg ''One Health and Urban Transformation'' at the University of Bonn.
Metals could be the link to new antibiotics
Compounds containing metals could hold the key to the next generation of antibiotics to combat the growing threat of global antibiotic resistance.
Antibiotics from the sea
The team led by Prof. Christian Jogler of Friedrich Schiller University, Jena, has succeeded in cultivating several dozen marine bacteria in the laboratory -- bacteria that had previously been paid little attention.
Antibiotics not necessary for most toothaches, according to new ADA guideline
The American Dental Association (ADA) announced today a new guideline indicating that in most cases, antibiotics are not recommended for toothaches.
Antibiotics with novel mechanism of action discovered
Many life-threatening bacteria are becoming increasingly resistant to existing antibiotics.
Resistance can spread even without the use of antibiotics
Antibiotic resistance does not spread only where and when antibiotics are used in large quantities, ETH researchers conclude from laboratory experiments.
Selective antibiotics following nature's example
Chemists from Konstanz develop selective agents to combat infectious diseases -- based on the structures of natural products
Antibiotics can inhibit skin lymphoma
New research from the LEO Foundation Skin Immunology Research Center at the University of Copenhagen shows, surprisingly, that antibiotics inhibit cancer in the skin in patients with rare type of lymphoma.
Antibiotics may treat endometriosis
Researchers at Washington University School of Medicine in St. Louis have found that treating mice with an antibiotic reduces the size of lesions caused by endometriosis.
How antibiotics help spread resistance
Bacteria can become insensitive to antibiotics by picking up resistance genes from the environment.
More Antibiotics News and Antibiotics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.