Nav: Home

Mechanism regulating species coexistence in a subtropical forest revealed

October 09, 2019

For over a century, ecologists have questioned how the extraordinarily high number of tree species can coexist in tropical forests. In the early 1970s, Daniel Janzen and Joseph Connell independently came up with the pathogen-driven Janzen-Connell hypothesis to explain the astonishing plant diversity we observe. They proposed that specialist natural enemies could accumulate near dense patches of their hosts and attack seeds and seedlings of the same species, ultimately lending an advantage to locally rare species - a phenomenon known as conspecific negative density dependence.

A large number of studies have provided compelling evidence for the diversity-promoting effects of pathogens in a wide range of tropical forests. However, the collective importance of specialist natural enemies in determining the diversity observed in subtropical communities had remained unclear until recently.

Subtropical evergreen broad-leaved forests of China are among the most species-rich areas in the world, containing more than 10,000 vascular plant species. One of the striking differences between subtropical and tropical forests is that tropical forests are usually dominated by arbuscular mycorrhizal (AM) species, whereas subtropical forests are usually dominated by AM trees when considering species number, but by ectomycorrhizal (EcM) trees when considering basal area.

A research group led by Prof. MA Keping from the Institute of Botany of the Chinese Academy of Sciences, in collaboration with scientists from the University of Maryland, College Park and the Institute of Microbiology, have now revealed the underlying mechanism regulating species coexistence in a subtropical forest.

The research, entitled "Differential soil fungus accumulation and density dependence of trees in a subtropical forest," was published in Science on October 4.

In the study, the researchers point out that species' mycorrhizal types mediate tree-neighborhood interactions at the community level, and much of the interspecific variation in local tree interactions is explained by how tree species differ in their fungal density accumulation rates as they grow.

Species with higher accumulation rates of pathogenic fungi suffered more from conspecific neighbors, whereas species with lower conspecific inhibition had higher accumulation rates of EcM fungi, suggesting that mutualistic and pathogenic fungi play important, but opposing, roles on species coexistence.

"The findings provide an extra dimension to the Janzen-Connell hypothesis by showing that pathogen accumulation rates may play a key role in driving the strength of tree interactions, but EcM fungi may overrule them. Models of tree diversity should incorporate the role of both plant pathogens and mutualists," says CHEN Lei, an assistant professor of ecology and first author of the new study.

These results provide important clues to clarifying the mechanism underlying the latitudinal gradients in tree interaction and global biodiversity patterns in natural forests.
This is another important achievement in understanding the diversity and functions of subtropical forests since publication of a study concerning the impact of tree diversity on forest productivity (Huang et al., Science, 2018) by Prof. MA Keping and his colleagues.

Chinese Academy of Sciences Headquarters

Related Tropical Forests Articles:

11% of destroyed moist tropical forests could be restored to boost climate, environment
Researchers identified more than 100 million hectares of lost lowland tropical rain forests -- restoration hotspots -- spread out across Central and South America, Africa and Southeast Asia that present the most compelling opportunities for restoration to overcome rising global temperatures, water pollution and shortages, and the extinction of plant and animal life.
Scientists estimate: Half of tropical forests under hunting pressure
Over half of the tropical forests is under hunting pressure.
Hunting responsible for mammal declines in half of intact tropical forests
Defaunation -- the loss of species or decline of animal populations -- is reaching even the most remote and pristine tropical forests.
How forest termites protect tropical forests from drought
The efforts of tiny forest termites have a big effect on the harmful ecological effects of drought in tropical rainforests, according to a new study, which reveals their important role in maintaining ecosystem function during periods of extended aridity.
Experts warn against mega-dams in lowland tropical forests
Mega-dams should not be built in lowland tropical forest regions due to the threat they pose to biodiversity and ecosystems, according to experts at the University of Stirling.
Insect biological control shields tropical forests
An international team of scientists*, involving entomologists, conservation biologists, agro-ecologists and geographers, has just revealed how on-farm biological control can slow the pace of tropical deforestation and avert biodiversity loss on a macro-scale.
Trees' enemies help tropical forests maintain their biodiversity
Scientists have long struggled to explain how tropical forests can maintain their staggering diversity of trees without having a handful of species take over -- or having many other species die out.
Clark University researchers: Development threatens tropical forests
While infrastructure expansion has been broadly investigated as a driver of deforestation, the impacts of extractive industry and its interactions with infrastructure investment on forest cover are less well studied.
New study answers old questions about why tropical forests are so ecologically diverse
The population of a tropical tree increases mostly in places where it is rare, a Brown study found.
Primary tropical forests are best but regrowing forests are also vital to biodiversity
Even after 40 years of recovery, secondary forests remain species and carbon-poor compared to undisturbed primary forests, a new study reveals.
More Tropical Forests News and Tropical Forests Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.