Nav: Home

Physicists couple key components of quantum technologies

October 09, 2019

Quantum effects are genuinely found in the world of nanostructures and allow a wide variety of new technological applications. For example, a quantum computer could in the future solve problems, which conventional computers need a lot of time to handle. All over the world, researchers are engaged in intensive work on the individual components of quantum technologies - these include circuits that process information using single photons instead of electricity, as well as light sources producing such individual quanta of light. Coupling these two components to produce integrated quantum optical circuits on chips presents a particular challenge.

Researchers at the University of Münster (Germany) have now developed an interface that couples light sources for single photons with nanophotonic networks. This interface consists of so-called photonic crystals, i.e. nanostructured dielectric materials that can enhance a certain wavelength range when light passes through. Such photonic crystals are used in many areas of research, but they had not previously been optimized for this type of interface. The researchers took particular care to achieve this feat in a way that allows for replicating the photonic crystals straightforwardly by using established nanofabrication processes.

"Our work shows that it is not only in highly specialized laboratories and unique experiments that complex quantum technologies can be produced," says physicist Dr. Carsten Schuck, an assistant professor at Münster University who headed the study together with Dr. Doris Reiter, likewise an assistant professor, who works in the field of solid state theory. The results could help to make quantum technologies scalable. The study has been published in the journal Advanced Quantum Technologies.

Background and method:

As single photons obey the laws of quantum physics, researchers talk of quantum emitters with respect to the light sources involved. For their study, the researchers considered quantum emitters which are embedded in nanodiamonds and emit photons when they are stimulated by means of electromagnetic fields. In order to produce the interfaces desired, the researchers' aim was to develop optical structures tailored to the wavelength of the quantum emitters.

Cavities or holes in photonic crystals are well suited for trapping light in minute volumes and getting it to interact with matter such as, in this case, nanodiamonds. Jan Olthaus, a PhD student in physics in Doris Reiter's junior research group, developed theoretical concepts and special computer-assisted simulation techniques in order to compute the designs for these photonic crystals.

The theoretically developed designs were produced by physicists in the junior research group headed by Carsten Schuck at the Center for NanoTechnology and the Center for Soft Nanoscience at Münster University. PhD student Philipp Schrinner manufactured the crystals from a thin film of silicon nitride. For this purpose, he used modern electron beam lithography and special etching methods on the equipment at the Münster Nanofabrication Facility and succeeded in producing high-quality crystals directly on the base material of silicon dioxide.

In structuring the crystals, the researchers varied not only the size and the arrangement of the cavities, but also the width of the waveguide on which the cavities were placed. The results measured showed that photonic crystals which demonstrated a special variation in hole sizes were best suited for the interfaces.

"Our collaboration - between theoretical and experimental physicists - is an ideal one for physics research," says Doris Reiter. "This type of collaboration isn't always easy, as our respective methods of working are often very different indeed - which is why we are all the more delighted that it turned out so well in the case of our two junior research groups." "What's special about our work," adds Carsten Schuck, "is that our designs don't require any additional processing steps, because they are compatible with established thin-film technology for integrated photonic circuits." This cannot be taken for granted in the development of complex quantum technologies, because although researchers often succeed in producing an important, high-quality component as a one-off, they are not able to produce multiple copies of the same component again.

The next steps for the researchers involve trying to position the quantum emitters, embedded in the nanodiamonds, at certain spots on the photonic crystals - with the aim of putting the results of the study into practice. To this end, the team headed by Carsten Schuck is already developing a special nanofabrication technique which is able, for example, to place a diamond just 100-nanometres in size with an accuracy of less than 50 nanometres. The team of theoretical physicists led by Doris Reiter wants to extend the studies to other materials systems and more complex geometries of photonic crystals and, for example, use elliptical holes instead of round ones.
-end-
Original publication: J. Olthaus, P. P. J. Schrinner, D. E. Reiter & C. Schuck (2019). Optimal photonic crystal cavities for coupling nanoemitters to photonic integrated circuits. Advanced Quantum Technologies; DOI: 10.1002/qute.201900084

University of Münster

Related Crystals Articles:

Engineered protein crystals make cells magnetic
If scientists could give living cells magnetic properties, they could perhaps manipulate cellular activities with external magnetic fields.
Appreciating the classical elegance of time crystals
Structures known as 'time crystals' -- which repeat in time as conventional crystals repeat in space -- have recently captured the interest and imagination of researchers across disciplines.
Making and controlling crystals of light
EPFL scientists have shown how light inside optical on-chip microresonators can be crystallized in a form of periodic pulse trains that can boost the performance of optical communication links or endow ultrafast LiDAR with sub-micron precision.
From crystals to glasses: a new unified theory for heat transport
Theoretical physicists from SISSA and the UCDavis lay brand new foundations to heat transport in materials, which finally allow crystals, polycrystalline solids, alloys, and glasses to be treated on the same solid footing.
How to trick electrons to see the hidden face of crystals
The 3D analysis of crystal structures requires a full 3D view of the crystals.
Science snapshots: Chromosomes, crystals, and drones
From Berkeley Lab: exploring human origins in the uncharted territory of our chromosomes; scientists grow spiraling new material; drones will fly for days with this new technology
Probing semiconductor crystals with a sphere of light
Tohoku University researchers have developed a technique using a hollow sphere to measure the electronic and optical properties of large semiconducting crystals.
Dowsing for electric fields in liquid crystals
Nematic liquid crystals can be oriented in a curious way termed the 'dowser texture', which is sensitive to external conditions.
How to enlarge 2D materials as single crystals?
IBS scientists have presented a novel approach to synthesize large-scale of silicon wafer size, single crystalline 2D materials.They have found a substrate with a lower order of symmetry than that of a 2D material that facilitates the synthesis of single crystalline 2D materials in a large area.
Samarium-doped crystals with 'giant' piezoelectricity
By introducing trace amounts of the element samarium (Sm), researchers greatly enhanced the performance of piezoelectric crystals used in advanced piezoelectric devices like sensors, a new study reports.
More Crystals News and Crystals Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.