Nav: Home

Human gut microbes could make processed foods healthier

October 09, 2019

A new study from Washington University School of Medicine in St. Louis sheds light on how human gut microbes break down processed foods -- especially potentially harmful chemical changes often produced during modern food manufacturing processes.

Eating processed foods such as breads, cereals and sodas is associated with negative health effects, including insulin resistance and obesity.

Reporting Oct. 9 in the journal Cell Host & Microbe, scientists have identified a specific human gut bacterial strain that breaks down the chemical fructoselysine, and turns it into harmless byproducts. Fructoselysine is in a class of chemicals called Maillard Reaction Products, which are formed during food processing. Some of these chemicals have been linked to harmful health effects. These findings raise the prospect that it may be possible to use such knowledge of the gut microbiome to help develop healthier, more nutritious processed foods.

The study was conducted in mice that were raised under sterile conditions, given known collections of human gut microbes and fed diets containing processed food ingredients.

"This study gives us a deeper view of how components of our modern diets are metabolized by gut microbes, including the breakdown of components that may be unhealthy for us," said Jeffrey I. Gordon, MD, the Dr. Robert J. Glaser Distinguished University Professor and director of the Edison Family Center for Genome Sciences & Systems Biology. "We now have a way to identify these human gut microbes and how they metabolize harmful food chemicals into innocuous byproducts."

Human gut microbial communities see foods as collections of chemicals. Some of these chemical compounds have beneficial effects on the communities of microbes living in the gut as well as on human health. For example, Gordon's past work has shown that the gut microbiome plays a vital role in a baby's early development, with healthy gut microbes contributing to healthy growth, immune function, and bone and brain development. But modern food processing can generate chemicals that may be detrimental to health. Such chemicals have been associated with inflammation linked to diabetes and heart disease. The researchers are interested in understanding the complex interactions between human gut microbes and the chemicals that are commonly consumed as part of a typical American diet.

In the new study, the researchers showed that a specific bacterium called Collinsella intestinalis breaks down the chemical fructoselysine into components that are harmless.

"Fructoselysine is common in processed food, including ultra-pasteurized milk, pasta, chocolate and cereals," said first author Ashley R. Wolf, PhD, a postdoctoral researcher in Gordon's lab. "High amounts of fructoselysine and similar chemicals in the blood have been linked to diseases of aging, such as diabetes and atherosclerosis."

When fed a diet containing high amounts of fructoselysine, mice harboring Collinsella intestinalis in their gut microbial communities showed an increase in the abundance of this bacteria as well as an increase in the gut microbial communities' ability to break down fructoselysine into harmless byproducts.

"This specific bacterial strain thrives in these circumstances," Gordon said. "And as it increases in abundance, fructoselysine is metabolized more efficiently."

He added, "The new tools and knowledge gained from this initial study could be used to develop healthier, more nutritious foods as well as design potential strategies to identify and harness certain types of gut bacteria shown to process potentially harmful chemicals into innocuous ones. A corollary is that they may help us distinguish between consumers whose gut microbial communities are either vulnerable or resistant to the effects of certain products introduced during food processing."

Emphasizing the complexity of this task, Gordon, Wolf and their colleagues also showed that close cousins of Collinsella intestinalis did not respond to fructoselysine in the same way. These bacterial cousins, whose genomes vary somewhat, do not thrive in a fructoselysine-rich environment. The researchers said future studies are required before scientists will be able to identify and harness the specific capacities of individual microbes to clean up the array of potentially deleterious chemicals produced during some types of modern food manufacturing.
-end-
This work was supported by the National Institutes of Health (NIH), grant numbers DK70977, DK078669, and DK30292; the American Diabetes Association, grant number 1-16-PDF-125; the Damon Runyon Cancer Research Foundation, grant number DRG-2303-17; and by the Russian Science Foundation, grant number 19-14-00305.

Gordon is a co-founder of Matatu Inc., a company characterizing the role of diet-by-microbiota interactions in animal health.

Wolf AR, et al. Bioremediation of a common product of food processing by a human gut bacterium. Cell Host & Microbe. Oct. 9, 2019.

Washington University School of Medicine's 1,500 faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is a leader in medical research, teaching and patient care, ranking among the top 10 medical schools in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Washington University School of Medicine

Related Gut Microbes Articles:

Human gut microbes could make processed foods healthier
A new study from Washington University School of Medicine in St.
For gut microbes, not all types of fiber are created equal
Certain human gut microbes with links to health thrive when fed specific types of ingredients in dietary fibers, according to a new study from Washington University School of Medicine in St.
Bacterial sex drives evolution of microbes to conquer and colonize the gut
Healthy mice study real-time gut colonization and discovered a pivotal role for bacterial sex in the evolution of the mammalian microbiome.
Gut microbes may affect the course of ALS
Researchers isolated a molecule that may be under-produced in the guts of patients.
Gut microbes protect against neurologic damage from viral infections
Gut microbes produce compounds that prime immune cells to destroy harmful viruses in the brain and nervous system, according to a mouse study published today in eLife.
Gut microbes protect against flu virus infection in mice
Commensal gut microbes stimulate antiviral signals in non-immune lung cells to protect against the flu virus during early stages of infection, researchers report July 2 in the journal Cell Reports.
Gut microbes associated with temperament traits in children
Scientists in the FinnBrain research project of the University of Turku discovered that the gut microbes of a 2.5-month-old infant are associated with the temperament traits manifested at six months of age.
Gut microbes eat our medication
Researchers have discovered one of the first concrete examples of how the microbiome can interfere with a drug's intended path through the body.
Gut microbes respond differently to foods with similar nutrition labels
Foods that look the same on nutrition labels can have vastly different effects on our microbiomes, report researchers in a paper publishing June 12 in the journal Cell Host & Microbe.
Uncovering uncultivated microbes in the human gut
A human's health is shaped both by environmental factors and the body's interactions with the microbiome, particularly in the gut.
More Gut Microbes News and Gut Microbes Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.