Nav: Home

Algorithm personalizes which cancer mutations are best targets for immunotherapy

October 09, 2019

PHILADELPHIA - As tumor cells multiply, they often spawn tens of thousands of genetic mutations. Figuring out which ones are the most promising to target with immunotherapy is like finding a few needles in a haystack. Now a new model developed by researchers in the Abramson Cancer Center at the University of Pennsylvania hand-picks those needles so they can be leveraged in more effective, customized cancer vaccines. Cell Systems published the data on the model's development today, and the algorithm is already available online as an open source technology to serve as a resource.

"There are mutations in tumors that can lead to powerful immune responses, but for every one mutation that generates a robust response, about 50 mutations don't work at all, which means the signal-to-noise ratio is not great," said the study's lead author Lee P. Richman, an MD/PhD candidate in Cancer Biology in the Perelman School of Medicine at the University of Pennsylvania. "Our model works like a filter that highlights the signal and shows us which targets to focus on."

Currently, sequencing a tumor and identifying possible immunotherapies is based on a measurement called tumor mutations burden (TMB), essentially a measure of the rate of mutations present in a given tumor. Tumors with a high rate of mutation are more likely to respond to immunotherapy targeting inhibitors like PD-1. The problem is that as cancer cells divide, they mutate at random, and since they divide exponentially, the potential mutations are almost infinite. This means that while a given immunotherapy can target some percentage of cancer cells, it may not be enough to be an effective treatment for any given patient.

The Penn team's model looks instead at protein sequences from samples of individual patients and evaluates how much of it looks similar to healthy cells and how much looks different enough that the immune system might react to it. The more it is dissimilar, the better immunotherapy target it makes because it's more likely to attract and activate therapies with less collateral damage to healthy cells. The model's prediction is also personalized to each patient's sample. The team analyzed samples of 318 patients from five different clinical trial data sets and not only confirmed the association between dissimilarity and promise as an immunotherapy target, but also found that dissimilarity correlated to increased overall survival after PD-1 therapy in patients with non-small cell lung cancer.

"With so many different possibilities of mutations, we essentially boiled the question of which targets to use down to a math problem, then developed an algorithm to solve it," said Andrew J. Rech, MD, PhD, a resident in Pathology and Laboratory Medicine and the study's co-senior author along with Robert H. Vonderheide, MD, DPhil, director of the Abramson Cancer Center. "We also knew it was important to make this model available for other researchers to help inform vaccine development and clinical trials."

The researchers say in addition to its use in trials, future work will also include applying the tool to more data sets to refine the algorithm.
-end-
This study was supported by the National Institutes of Health (R01 CA229803, P30 CA016520) and the Parker Institute for Cancer Immunotherapy.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $7.8 billion enterprise.

The Perelman School of Medicine has been ranked among the top medical schools in the United States for more than 20 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $425 million awarded in the 2018 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: the Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center--which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report--Chester County Hospital; Lancaster General Health; Penn Medicine Princeton Health; and Pennsylvania Hospital, the nation's first hospital, founded in 1751. Additional facilities and enterprises include Good Shepherd Penn Partners, Penn Home Care and Hospice Services, Lancaster Behavioral Health Hospital, and Princeton House Behavioral Health, among others.

Penn Medicine is powered by a talented and dedicated workforce of more than 40,000 people. The organization also has alliances with top community health systems across both Southeastern Pennsylvania and Southern New Jersey, creating more options for patients no matter where they live.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2018, Penn Medicine provided more than $525 million to benefit our community.

University of Pennsylvania School of Medicine

Related Cancer Cells Articles:

Scientists have identified the presence of cancer-suppressing cells in pancreatic cancer
Researchers have identified cells containing a protein called Meflin that has a role in restraining the progression of pancreatic cancer.
Changes in the metabolism of normal cells promotes the metastasis of ovarian cancer cells
A systematic examination of the tumor and the tissue surrounding it -- particularly normal cells in that tissue, called fibroblasts -- has revealed a new treatment target that could potentially prevent the rapid dissemination and poor prognosis associated with high-grade serous carcinoma (HGSC), a tumor type that primarily originates in the fallopian tubes or ovaries and spreads throughout the abdominal cavity.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
White blood cells related to allergies may also be harnessed to destroy cancer cells
A new Tel Aviv University study finds that white blood cells which are responsible for chronic asthma and modern allergies may be used to eliminate malignant colon cancer cells.
Conversion of breast cancer cells into fat cells impedes the formation of metastases
An innovative combination therapy can force malignant breast cancer cells to turn into fat cells.
Breast cancer cells in mice tricked into turning into fat cells
As cancer cells respond to cues in their microenvironment, they can enter a highly plastic state in which they are susceptible to transdifferentiation into a different type of cell.
Brain cancer: Typical mutation in cancer cells stifles immune response
The exchange of a single amino acid building block in a metabolic enzyme can lead to cancer.
Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.
Dying cancer cells make remaining glioblastoma cells more aggressive and therapy-resistant
A surprising form of cell-to-cell communication in glioblastoma promotes global changes in recipient cells, including aggressiveness, motility, and resistance to radiation or chemotherapy.
An index measures similarity between cancer cells and pluripotent stem cells
The new methodology measures tumor aggressiveness and the risk of relapse, helping doctors plan treatment, according to Brazilian scientists authors of a paper published in a special issue of the journal Cell.
More Cancer Cells News and Cancer Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.