Nav: Home

Chemical evolution -- One-pot wonder

October 09, 2019

Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth - under the same environmental conditions.

Evolution has a history: Before life could be formed on the then still young planet, the first simple building blocks must have been created some four billion years ago that set its formation in motion. Under what conditions and in what ways did such molecules come together to form more complex genetic polymers that were able to replicate themselves - precursors of today's DNA? Scientists around Professor Thomas Carell at the Ludwigs-Maximilian-Universitaet (LMU) Munich, are now able to explain another, if not the decisive, step in this chemical evolution that preceded biological phylogeny. They report about it in the renowned journal Science.

In their new work, Thomas Carell and his team propose a cascade of chemical reactions in which the four different components of the hereditary molecule RNA can all be produced under identical early Earth conditions: the primordial soup - cooked in one pot, so to speak. So far, there have been two competing pathways that required different geochemical settings on early Earth. One leads to the construction of the so-called pyrimidines, the letters C (cytosine) and U (uracil) in the RNA alphabet, the other to A (adenine) and G (guanin), the purines. Carell's team had already described the reaction path to the latter molecules in a previous paper. Now the Munich scientists have finally created all four genetic building blocks that might have jump-started life.

Accordingly, the simplest chemical ingredients and reaction conditions, such as those found on Earth millions of years ago on geothermal fields with subsoil volcanic activity or in shallow ponds for example, were sufficient to keep the synthesis of the RNA building blocks, going over a whole series of reaction steps. Starting materials for the experiments, which were intended to simulate prebiotic conditions, were substances as simple as ammonia, urea and formic acid. It also needed salts such as nitrites and carbonates as well as metals such as iron and zinc, which are present in large quantities in the Earth's crust. The chain of chemical reactions was driven only by wet-dry cycles, such as those caused by hydrothermal sources or periods of drought or rain.

Thomas Carell calls it a "breakthrough." It is interesting to see how comparatively homogeneous the reaction conditions are for the individual steps of synthesis. Even small fluctuations of physical parameters such as mild warming or cooling or the change between a slightly acidic and a slightly alkaline reaction environment are sufficient. "There are few complex molecules that can be produced in such narrow reaction bands," says the LMU chemist. Such simple framework conditions, he concludes, made it all the more plausible that these reaction cascades and thus a decisive step in chemical evolution could have taken place on early Earth.

Science 2019
-end-


Ludwig-Maximilians-Universität München

Related Evolution Articles:

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.
Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.