Nav: Home

New research uncovers how common genetic mutation drives cancer

October 09, 2019

SEATTLE -- October 9, 2019 -- A new, multicenter study led by Fred Hutchinson Cancer Research Center and Memorial Sloan Kettering Cancer Center determined how a single mutation in splicing factor 3b subunit 1 (SF3B1), the most frequently mutated splicing factor gene, drives the formation of many cancers. The findings are published today in the journal Nature.

Dr. Robert Bradley, associate member of Fred Hutch's Public Health Sciences and Basic Sciences divisions, and Dr. Omar Abdel-Wahab, associate member of Memorial Sloan Kettering's Human Oncology and Pathogenesis Program, led the study to discover how SF3B1 gene mutations cause cancer. The mutations occur in many cancer types, including:
  • Various leukemias

  • Myelodysplastic syndromes

  • Melanomas

  • Breast cancers

  • Pancreatic cancers

  • Liver cancers

  • Bladder cancers
Because SF3B1 encodes a protein that is critical for producing RNA molecules, Bradley and Abdel-Wahab studied RNA sequencing data from hundreds of patients with several different cancer types to search for abnormal RNA molecules. They discovered that the SF3B1 mutation causes cancer cells to produce an abnormal form of the BRD9 RNA molecule that included noncoding DNA sequences or "junk DNA," which garbled the genetic message. This "junk DNA" originated from a viral element that recently inserted itself into the human genome. Bradley and Abdel-Wahab showed that BRD9 is an important tumor suppressor in many types of cancer, including uveal melanoma (a type of melanoma that affects the eye), chronic lymphocytic leukemia and pancreatic cancer. They then designed therapeutics utilizing CRISPR technology and antisense oligonucleotides to reverse the disease process.

"We know many of the genetic mutations that cause cancer and that mutations in SF3B1, in particular, are strongly associated with many cancer types," Bradley said. "What's been unclear is why mutations in SF3B1 are so common and how to best identify treatment options. Thanks to breakthroughs in sequencing technology, computing power and CRISPR genome engineering, we were able to discover how SF3B1 mutations cause cancer and potentially block the process of tumor progression."

While the research is preclinical (not yet tested in humans), the researchers indicate that there is a strong potential to help cancer patients with the SF3B1 mutation via targeted therapeutics.

"As a physician, the thought of slowing or preventing a patient's tumor growth by modifying a molecule in their cells is really exciting," Abdel-Wahab said. "Developing new targeted therapies based on a patient's individual genetic profile is the key to breakthroughs in precision medicine."

Bradley and Abdel-Wahab hope to expand their work beyond proof-of-principle experiments and test their concepts with additional cancer types and, eventually, clinical therapy. Several antisense oligonucleotide therapies like the one developed by Bradley and Abdel-Wahab recently received Food and Drug Administration approval, suggesting their therapeutic method may be usable for treating patients.

Funding for this research came from a variety of sources, including the National Institutes of Health (grant numbers P30 CA015704, R01 DK103854 and R01 HL128239), the Department of Defense Bone Marrow Failure Research Program (BM150092 and W81XWH-12-1-0041) and nonprofit organizations including the Leukemia & Lymphoma Society, Evans MDS Foundation and others.

One of the study's co-authors, Dr. Cigall Kadoch, is a founder, board member and shareholder of Foghorn Therapeutics Inc. Her involvement with the company is unrelated to the current paper.

Abdel-Wahab has served as a consultant for H3 Biomedicine, Foundation Medicine Inc, Merck & Co. and Janssen Pharmaceutica. He has received prior research funding from H3 Biomedicine that is unrelated to the current paper.
At Fred Hutchinson Cancer Research Center, home to three Nobel laureates, interdisciplinary teams of world-renowned scientists seek new and innovative ways to prevent, diagnose and treat cancer, HIV/AIDS and other life-threatening diseases. Fred Hutch's pioneering work in bone marrow transplantation led to the development of immunotherapy, which harnesses the power of the immune system to treat cancer. An independent, nonprofit research institute based in Seattle, Fred Hutch houses the nation's first National Cancer Institute-funded cancer prevention research program, as well as the clinical coordinating center of the Women's Health Initiative and the international headquarters of the HIV Vaccine Trials Network.


Tom Kim

Fred Hutchinson Cancer Research Center

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at