Nav: Home

Uncovering the presynaptic distribution and profile of mitochondria

October 09, 2019

The ability to hear relies on neurons to constantly transmit information at very rapid timescales. This rapid rate of information transmission results in intense energetic demands. Within our cells, microscopic power plants called mitochondria provide the main source of energy keeping our bodies moving. While mitochondria serve an essential function throughout the body, within the brain they play an especially crucial role; providing the tremendous amount of energy needed to facilitate synaptic transmission (the transfer of information between neurons).

In the auditory system there is a large presynaptic terminal called calyx of Held that is critical for binaural sound processing. Prior to the onset of hearing, immature calyx synapses, do not release neurotransmitter at very fast rates. But once mature, they reliably and rapidly release neurotransmitter to encode auditory information., However, how mitochondria support the energy-demanding activity of the mature synapse remained unknown.

In a recent study published in the Journal of Neuroscience, scientists from the MPFI and the University of Iowa CCOM have provided unprecedented insight into the presynaptic distribution and profile of mitochondria in the developing and mature calyx of Held.

"My lab investigates how synapses enable neural circuits transmit a wide variety of information. In particular we are very interested in understanding the synaptic mechanisms that enable fast auditory signaling required for accurate identification and perception of sound information and their contribution to auditory deficits ," explains Samuel Young Jr., Ph.D., former Research Group Leader at MPFI and now Associate Professor in the Department of Anatomy and Cell Biology at the University of Iowa CCOM. "While we understand some of the general principles of how the calyx enables proper sound processing , many are still unknown. Therefore, we wanted to understand if there were mitochondrial changes at the subsynaptic levels. To answer our question, we needed the expertise of the EM core at MPFI. What started as a fledgling idea and a simple conversation and, turned into a fruitful collaborative effort."

Due to their relatively small size, mitochondrial volume and distributions are often difficult to analyze using conventional methods and require 3D- electron microscopy to fully reveal their intricate structural details. To accomplish this the Young Lab created a helper-dependent adenoviral vector with the mitochondria-targeting peroxidase, mito-APEX2 and expressed it at the mouse calyx of Held. In addition to that, the MPFI EM team developed protocols to detect APEX2-labeled mitochondria by 3D- electron microscopy to carry out extensive analysis of the presynaptic mitochondria volume and abundance.

"Our biggest challenge was to develop protocols and workflows that would allow us to image mitochondria within the calyx in fine detail using the advanced 3D- EM technologies," describes Connon Thomas, EM assistant at MPFI and first author of the publication. "After extensive optimization, we devised two strategies; the first used serial block-face scanning electron microscopy or SBF-SEM for short, which is a type of specialized EM that allows us to generate a large-scale set of 3D images in order to reconstruct and analyze mitochondria within the terminals. The second strategy used Automated Tape-collecting Ultra-Microtome serial section scanning electron microscopy (ATUM-ssSEM), which is a technique that produces higher resolution images which makes it easier to analyze fine sub-synaptic structures."

3D reconstructions of images taken with SBF-SEM revealed that mitochondrial volumes within the mature calyx and its surrounding axon were significantly higher than those found in its immature counterpart. It also seemed that mitochondria are selectively enriched within the mature calyx, containing higher volumes than the surrounding axon. This data affirms the idea that during development increased mitochondrial volumes support the higher energy demands of a more active mature calyx.

Using genetic tools developed by Young Lab and innovative new protocols developed by MPFI's EM Core, their combined expertise has generated novel approaches with broad applications in neuroscience research. "The strong collaboration between our EM Core and the Young Lab was essential for the success of this work," notes Naomi Kamasawa, Ph.D., Head of EM Core. Our collaborations will continue and will undoubted bring exciting new developments."

"The new protocols and applications developed for this work will have wide application for studying different circuits or different brain regions with combining genetic manipulation and electron microscopy," explained Young.
-end-


Max Planck Florida Institute for Neuroscience

Related Mitochondria Articles:

A ribosome odyssey in mitochondria
The ciliate mitoribosome structure provides new insights into the diversity of translation and its evolution.
Fireflies shed light on the function of mitochondria
By making mice bioluminescent, EPFL scientists have found a way to monitor the activity of mitochondria in living organisms.
First successful delivery of mitochondria to liver cells in animals
This experiment marks the first time researchers have ever successfully introduced mitochondria into specific cells in living animals.
Lack of mitochondria causes severe disease in children
Researchers at Karolinska Institutet in Sweden have discovered that excessive degradation of the power plants of our cells plays an important role in the onset of mitochondrial disease in children.
Unexpected insights into the dynamic structure of mitochondria
As power plants and energy stores, mitochondria are essential components of almost all cells in plants, fungi and animals.
Mitochondria are the 'canary in the coal mine' for cellular stress
Mitochondria, tiny structures present in most cells, are known for their energy-generating machinery.
Master regulator in mitochondria is critical for muscle function and repair
New study identifies how loss of mitochondrial protein MICU1 disrupts calcium balance and causes muscle atrophy and weakness.
Oxygen deficiency rewires mitochondria
Researchers slow the growth of pancreatic tumor cells.
Self-cannibalizing mitochondria may set the stage for ALS development
Northwestern Medicine scientists have discovered a new phenomenon in the brain that could explain the development of early stages of neurodegeneration that is seen in diseases such as ALS, which affects voluntary muscle movement such as walking and talking.  The discovery was so novel, the scientists needed to coin a new term to describe it: mitoautophagy, a collection of self-destructive mitochondria in diseased upper motor neurons of the brain that begin to disintegrate from within at a very early age.
Uncovering the presynaptic distribution and profile of mitochondria
In a recent study published in the Journal of Neuroscience, scientists from the MPFI and the University of Iowa CCOM have provided unprecedented insight into the presynaptic distribution and profile of mitochondria in the developing and mature calyx of Held.
More Mitochondria News and Mitochondria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.