Genomes offer new insights into fig-wasp symbiotic system

October 09, 2020

Banyan trees are fig trees that begin their life as an epiphyte. The most noticeable feature of banyan Ficus species is their extraordinary aerial roots, which enable them to live as hemi-epiphytes, as do the strangler figs often seen in tropical forests.

Being special for their enclosed urn-shaped inflorescence, fig plants rely on specific insect pollinators (fig wasps) for pollination and, in turn, provide nourishment and shelter for pollinators to reproduce. Morphological matching and signaling communication for host location between figs and their pollinators is required for successful pollination and oviposition.

This obligate mutualism is a fascinating case of extreme plant-insect codiversification.

In a study published in the journal Cell, researchers from Fujian Agriculture and Forestry University (FAFU) and the Xishuangbanna Tropical Botanical Garden (XTBG) provided insights into fig-wasp coevolution through comparative analyses of two Ficus genomes - one with aerial roots and one without, one monecious and one dioecious, as well as the genome of a coevolving wasp pollinator. They also sequenced more samples of figs and pollinators.

The researchers sequenced genomes of the monecious Chinese banyan tree, F. microcarpa, and a dioecious species lacking aerial roots, F. hispida, and one wasp genome coevolving with F. microcarpa, Eupristina verticillata. Comparative analysis of the two Ficus genomes revealed dynamic karyotype variation associated with adaptive evolution.

"We quantified endogenous auxin in F. microcarpa and F. hispida, and proposed that an auxin-dependent pathway promoted by light is associated with aerial root initiation, growth, and pattern formation," said WANG Gang, associate professor at XTBG and co-first author of the study.

Furthermore, the researchers constructed an ultra-density F1 paternal genetic map and Hi-C chromosome for studying sex determination and sex evolution in Ficus plants. They found a nascent Y chromosome in F. hispida and a male-specific AGAMOUS paralog, the FhAG2 gene, as a candidate sex determination gene of this fig species.

"We also established a phylogeny of Ficus by using data from resequenced genomes of 112 Ficus accessions comprising 62 Ficus species. Our phylogenetic analysis revealed that monoecy represents the ancestral reproductive system across the genus," noted the study.

Lastly, the researchers investigated a potential molecular mechanism of coevolution between 14 fig species of the subgenus Sycomorus and their obligate pollinator wasps. They identified candidate genes that had undergone selection, and the species-specific signaling compounds that were essential for communication in three fig-wasp species pairs.

"Population genomic analysis of subgenus Sycomorus figs and their obligate pollinator wasps and electrophysiological testing of pollinators responding to floral scents emitted from three different Ficus species support the important roles of the mevalonate and shikimate pathways in attracting species-specific pollinators and reveal potential molecular mechanisms of codiversification in this obligate mutualism," said WANG.

"The work, integrating efforts from several universities and institutes from China and overseas, particularly the expertise on genomic analysis from FAFU and fig biology from XTBG, will enhance our understanding of the species-specific mutualism between figs and fig wasps," said CHEN Jin, one of the corresponding authors of the study.
-end-


Chinese Academy of Sciences Headquarters

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.