From genome comparisons, UCSD researchers learn lessons about evolution and cancer

October 10, 2003

San Diego, Oct. 10, 2003 -- In 1905, American astronomer Percival Lowell predicted the existence of a new planet he called Planet X. Lowell proved that this new planet existed even though no one had been able to see it in the sky. Twenty-five years later, astronomer Clyde Tombaugh stumbled on images of X photographed from the Flagstaff Observatory in Arizona. Today, that planet is known as Pluto.

While it took twenty-five years for astronomers to go from theory to confirmation of Pluto's existence, it took genome scientists barely three months in 2003 to confirm a revolutionary new view of what happens in the human genome to cause dramatic evolutionary changes. Now, bioinformaticians at the University of California, San Diego (UCSD) -- who posited that 'fragile' regions exist in the human genome that are more susceptible to gene rearrangements -- are collaborating with biologists to see if their new theory can yield potentially life-saving insights into diseases such as breast cancer, in which chromosomal rearrangements are implicated.

"It took only three months to go from theory to hard scientific evidence that there are regions of the genome that are subject to evolutionary 'earthquakes' over and over again," says Pavel Pevzner, who holds the Ronald R. Taylor Chair in computer science and engineering at UCSD's Jacobs School of Engineering. "That is representative of how quickly knowledge is advancing in bioinformatics, and how useful this research can be for medicine and other fields."

In June, Pevzner and UCSD mathematics professor Glenn Tesler predicted the existence of evolutionary 'fault zones' -- hotspots where gene rearrangements are more likely to occur and change the architecture of our genomes. Their work was based on computational analysis and comparison of the human and mouse genomes. In a paper in the journal Proceedings of the National Academy of Sciences (PNAS), Pevzner and Tesler estimated that these fault zones may be limited to approximately 400 fragile regions that account for only 5 percent of the human genome. While reaching that estimate using computers, the researchers were not yet able to point to specific locations in the genome where these rearrangements are more commonplace.

The PNAS paper departed from the prevailing 'random breakage' theory of evolution that has been widely held for nearly two decades, but the theory of 'fragile breakage' quickly gained acceptance. A team led by UC Santa Cruz scientists Jim Kent and David Haussler, who are widely credited for their work in the public-sector assembly of the human genome, were the first to confirm the UCSD results. In addition, for the first time, they explicitly pinpointed the location of some of the faults in the human genome.

Kent's findings were published in the September 30 edition of PNAS, along with a commentary by two pioneers in computational biology: University of Ottawa mathematician David Sankoff, and Case Western Reserve University genetics professor Joseph Nadeau. The commentary supports the original conclusions of Pevzner and Tesler. That support is all the more notable, because Nadeau is the scientist who, in 1984, originated the random breakage theory that Pevzner and Tesler rebutted. In their article, he and Sankoff acknowledge that the random breakage theory needs to be revised along the lines spelled out by Pevzner and Tesler.

Using similar computational tools, Pevzner and his post-doctoral researcher, Ben Raphael, are working with biologists at the University of California, San Francisco (UCSF) Cancer Center to analyze chromosomal rearrangements in tumors. Their October paper in the journal Bioinformatics includes an analysis that yields the first high-resolution (albeit incomplete) picture of the genomic architecture of a complex breast cancer genome.

Human cancer cells frequently possess chromosomal aberrations (such as missing an arm of a chromosome), or rearrangements, leading to changes in genomic architecture. The breast cancer MCF7 cell line is an extreme example of such aberrations, where everything went wrong and all human chromosomes but one got rearranged, fused together, or broken, as if a tall building collapsed after an earthquake. Using the recently developed End Sequence Profiling (ESP) technique developed at UCSF Cancer Center that is cheaper and quicker than outright genome sequencing, Pevzner and colleagues analyzed human MCF7 tumor cells and derived 22 genomic rearrangements implicated in cancer, most of them previously unknown. Many of them have already been experimentally confirmed at UCSF. The UCSF team has extended this work to brain, ovarian, and prostate cancer cells, generating a ten-fold increase in the ESP data that Pevzner and Raphael are now analyzing.

"When the letters of our genomic alphabet get scrambled in a single lifetime, it can be life-threatening," says Pevzner. "But we suspect that by understanding how genomic rearrangements play out over millions of years of human evolution, we may find a correlation between these phenomena -- and possibly provide biologists with new tools to study such conditions as breast cancer at the genetic level."

As soon as reconstructions of other tumor genomes are completed, Pevzner and his colleagues will investigate whether the breakpoints implicated in cancers are correlated with the breakpoints evident in human-mouse evolution from their common ancestor 75 million years ago. And as other mammalian genomes are sequenced, Pevzner and Tesler expect to use advanced computational tools to derive further insights into human evolution and cancer.
-end-
Media Contact: Doug Ramsey 858-822-5825 dramsey@ucsd.edu

University of California - San Diego

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.