Microgrid allows simultaneous study of multiple variables

October 10, 2007

UPTON, NY -- Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have developed a method for correlating the results of microscopic imaging techniques in a way that could lead to improved understanding, diagnosis, and possibly treatment of a variety of disease conditions, including Alzheimer's disease. The Laboratory has filed a U.S. provisional patent application for the invention.

The invention is essentially a micron-scale metallic marking grid upon which scientists place their samples -- biological tissues or inorganic samples such as minerals -- prior to imaging with different methods. "When the findings are analyzed, the grid can be used to 'map,' or orient, the images to one another, allowing us to study multiple variables in a single sample and better understand how they relate to one another," said biophysicist Lisa Miller, leader of the team that developed the new method.

For example, many diseases such as Alzheimer's are characterized by changes in both organic materials, such as proteins, as well as changes in the composition or concentration of inorganic trace metals (e.g., iron, copper, and zinc). Scientists have techniques -- infrared spectroscopy and x-ray fluorescence -- for studying each of these independently. But without a way to correlate the findings from the two methods, important information about the relationship between the organic and inorganic components can be missed.

"The x-ray and infrared-sensitive grid allows for the study of both pathological symptoms by precisely overlapping the results of these imaging methods," Miller said. "This ability to correlate images will ultimately lead to a more complete picture of many disease states."

The grid is deposited in two thicknesses onto an x-ray transparent material like mylar. It can be made of any metal, but gold is preferred. The "bars" of the grid are only a couple of nanometers thick, whereas the remainder of the metal surface is thicker. The dual thicknesses make the pattern sensitive to both infrared reflectivity and x-ray fluorescence imaging.

In another version of the invention, a single-layered grid is used to correlate light microscopy with x-ray fluorescence imaging.

Once the images are collected, custom software uses the grid patterns to align the images and correlate them with each other.

In addition to helping scientists study disease processes, the method could also be applied in monitoring and/or cleaning up environmental contamination, which is also characterized by the interplay of organic and inorganic factors.
-end-
This work was performed at Brookhaven Lab's National Synchrotron Light Source (NSLS), a source of intense infrared, ultraviolet, and x-ray beams used for studying atomic level details of a wide range of materials from biological molecules to semiconductor devices. More information on this study can be found at: http://www.nsls.bnl.gov/newsroom/science/2007/09-Miller.htm

This project was funded by the National Institutes of Health with operational support for the NSLS provided by the Office of Basic Energy Sciences within the U.S. Department of Energy's Office of Science.

Inquiries on licensing this technology should be directed to Dorene Price at 631-344-4153 or price@bnl.gov.

One of ten national laboratories overseen and funded primarily by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more: http://www.bnl.gov/newsroom

Note to local editors: Lisa Miller lives in Rocky Point, New York.

DOE/Brookhaven National Laboratory

Related Disease Articles from Brightsurf:

CLCN6 identified as disease gene for a severe form of lysosomal neurodegenerative disease
A mutation in the CLCN6 gene is associated with a novel, particularly severe neurodegenerative disorder.

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

Potential link for Alzheimer's disease and common brain disease that mimics its symptoms
A new study by investigators from Brigham and Women's Hospital uncovered a group of closely related genes that may capture molecular links between Alzheimer's disease and Limbic-predominant Age-related TDP-43 Encephalopathy, or LATE, a recently recognized common brain disorder that can mimic Alzheimer's symptoms.

Antioxidant agent may prevent chronic kidney disease and Parkinson's disease
Researchers from Osaka University developed a novel dietary silicon-based antioxidant agent with renoprotective and neuroprotective effects.

Tools used to study human disease reveal coral disease risk factors
In a study published in Scientific Reports, a team of international researchers led by University of Hawai'i (UH) at Mānoa postdoctoral fellow Jamie Caldwell used a statistical technique typically employed in human epidemiology to determine the ecological risk factors affecting the prevalence of two coral diseases--growth anomalies, abnormalities like coral tumors, and white syndromes, infectious diseases similar to flesh eating bacteria.

Disease-aggravating mutation found in a mouse model of neonatal mitochondrial disease
The new mitochondrial DNA (mtDNA) variant drastically speeds up the disease progression in a mouse model of GRACILE syndrome.

Human longevity largest study of its kind shows early detection of disease & disease risks
Human Longevity, Inc. (HLI) announced the publication of a ground-breaking study in the journal Proceedings of the National Academy of Sciences (PNAS).

30-year study identifies need of disease-modifying therapies for maple syrup urine disease
A new study analyzes 30 years of patient data and details the clinical course of 184 individuals with genetically diverse forms of Maple Syrup Urine Disease (MSUD), which is among the most volatile and dangerous inherited metabolic disorders.

Long-dormant disease becomes most dominant foliar disease in New York onion crops
Until recently, Stemphylium leaf blight has been considered a minor foliar disease as it has not done much damage in New York since the early 1990s.

Read More: Disease News and Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.