Potent peptides inhibit HIV entry into cells

October 10, 2007

UPTON, NY -- Based in part on protein structures determined at the National Synchrotron Light Source (NSLS) at the U.S. Department of Energy's Brookhaven National Laboratory, scientists at the University of Utah have developed new peptides that appear to be significantly more effective at blocking HIV's entry into cells than other drugs in their class. In a paper being published online by the Proceedings of the National Academy of Sciences the week of October 8, 2007, the researchers say these peptides are sufficiently potent to begin pre-clinical studies as a new class of agents for the prevention and treatment of HIV/AIDS.

"Our 'D-peptides' offer several potential therapeutic advantages over existing peptide entry inhibitors, which are costly, require high dose injections, and suffer from the emergence of drug-resistance," said University of Utah biochemist Michael S. Kay, lead author on the paper. "In contrast, our D-peptides resist degradation, so they have the potential to be administered by mouth and last longer in the bloodstream. Since these inhibitors have a unique inhibitory mechanism, they should work well in combination with existing HIV inhibitors."

The researchers were particularly interested in developing drugs to bind to an essential "pocket" structure found in all HIV strains that was previously identified as a promising drug target using structures determined at Brookhaven's NSLS. Numerous previous attempts to target this pocket failed to produce potent and non-toxic pocket-specific entry inhibitors.

In the current work, the researchers used a high-throughput technique to screen a "library" containing hundreds of millions of peptides to identify the rare peptides that would bind to the pocket structure and inhibit HIV entry.

After identifying the most promising candidate peptides, the researchers analyzed the structure of these peptides bound to the target protein using x-ray crystallography at the NSLS. In this technique, researchers analyze how an extremely bright beam of x-rays, available only at synchrotron sources, bounces off and is refracted by the sample to determine the positions of individual atoms.

"These structures reveal details of how the peptides bind and guide the development of future inhibitors," said paper co-author Annie Heroux, a biologist and crystallography specialist at Brookhaven Lab.

This structure-assisted design led to the discovery of D-peptides with up to a 40,000-fold improved antiviral potency over previously reported D-peptides. The structures also suggest ways to engineer the peptides to reduce the chance of drug resistance.
This research was funded by the National Institutes of Health, the University of Utah Technology Commercialization Project, and by the American Cancer Society. Operational funding for the NSLS is provided by the Office of Basic Energy Sciences within the U.S. Department of Energy's Office of Science and by the National Institutes of Health.

One of ten national laboratories overseen and funded primarily by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more: http://www.bnl.gov/newsroom

Note to local editors: Annie Heroux lives in Shirley, New York.

DOE/Brookhaven National Laboratory

Related Peptides Articles from Brightsurf:

Peptides+antibiotic combination may result in a more effective treatment for leishmaniasis
A combination of peptides and antibiotics could be key to eliminating the parasite causing leishmaniasis and avoiding the toxicity to people and animals caused by current drugs.

Designer peptides show potential for blocking viruses, encourage future study
Chemically engineered peptides, designed and developed by a team of researchers at Rensselaer Polytechnic Institute, could prove valuable in the battle against some of the most persistent human health challenges.

Tracking down cryptic peptides
Using a newly developed method, researchers from the University of Würzburg, in cooperation with the University Hospital of Würzburg, were able to identify thousands of special peptides on the surface of cells for the first time.

Synthesis of prebiotic peptides gives clues to the origin of life on Earth
Coordination Compounds Lab of Kazan Federal University started researching prebiotic peptide synthesis in 2013 with the use of the ASIA-330 flow chemistry system.

Peptides that can be taken as a pill
Peptides represent a billion-dollar market in the pharmaceutical industry, but they can generally only be taken as injections to avoid degradation by stomach enzymes.

Harnessing psyllid peptides to fight citrus greening disease
BTI, USDA and UW scientists have identified peptides in the Asian citrus psyllid, an insect that spreads the bacterium that causes citrus greening disease (huanglongbing, HLB).

New technique has potential to protect oranges from citrus greening
Citrus greening, also called Huanglongbing (HLB), is devastating the citrus industry.

Researchers show what drives a novel, ordered assembly of alternating peptides
A team of researchers has verified that it is possible to engineer two-layered nanofibers consisting of an ordered row of alternating peptides, and has also determined what makes these peptides automatically assemble into this pattern.

Origin of life insight: peptides can form without amino acids
Peptides, one of the fundamental building blocks of life, can be formed from the primitive precursors of amino acids under conditions similar to those expected on the primordial Earth, finds a new UCL study published in Nature.

Ragon Institute study identifies viral peptides critical to natural HIV control
Investigators at the Ragon Institute of MGH, MIT and Harvard have used a novel approach to identify specific amino acids in the protein structure of HIV that appear critical to the ability of the virus to function and replicate.

Read More: Peptides News and Peptides Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.