Nav: Home

A link between mitochondria and tumor formation in stem cells

October 10, 2008

Researchers report on a previously unknown relationship between stem cell potency and the metabolic rate of their mitochondria -a cell's energy makers. Stem cells with more active mitochondria also have a greater capacity to differentiate and are more likely to form tumors.

These findings, appearing this week in JBC, could lead to methods of enriching the best stem cells from a population for therapeutic use and may provide some insights into the role of stem cells in cancer.

This study, conducted by Toren Finkel and colleagues at the National Heart, Lung and Blood Institute (NHBLI), sorted mouse embryonic stem cells by their mitochondrial potential (the amount of voltage going across mitochondrial membranes, similar to how nerve activity is measured) and found that both visually and in the expression of key stem cell markers, low and high metabolism stem cells were indistinguishable.

Yet, when transplanted into mice, these two types of cells had contrasting properties, as cells with lower metabolic rates were more efficient at differentiating into other cell types while the highly metabolic cells were more prone to keep dividing and form teratomas, tumors characterized by having various tissue types mixed together.

The potential of stem cells to form teratomas remains a big obstacle in their clinical use, but these results may have at least uncovered the mechanism behind it. In fact, when Finkel and colleagues administered the mitochondrial inhibitor rapamycin to high metabolism stem cells, their teratoma capacity decreased significantly.

While this work was done with mouse cells, the researchers believe a similar relationship holds true in human stem cells. Thus, developing methods to remove highly metabolic stem cells from a population could improve their safety.
-end-
From the JBC article: "Mitochondrial metabolism modulates differentiation and teratoma formation capacity in mouse embryonic stem cells" by Stefan Schieke, Mingchao Ma, Liu Cao, J. Phillip McCoy Jr., Chengyu Liu, Nancy Hensel, A. John Barrett, Manfred Boehm and Toren Finkel

Corresponding Authors: Toren Finkel or Manfred Boehm, Translational Medicine Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD; E-Mail: finkelt@nih.gov or boehmm@nhlbi.nih.gov

The American Society for Biochemistry and Molecular Biology is a nonprofit scientific and educational organization with over 11,900 members in the United States and internationally. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, nonprofit research institutions and industry. The Society's student members attend undergraduate or graduate institutions.

Founded in 1906, the Society is based in Bethesda, Maryland, on the campus of the Federation of American Societies for Experimental Biology. The Society's purpose is to advance the science of biochemistry and molecular biology through publication of the Journal of Biological Chemistry, the Journal of Lipid Research, and Molecular and Cellular Proteomics, organization of scientific meetings, advocacy for funding of basic research and education, support of science education at all levels, and promoting the diversity of individuals entering the scientific work force.

For more information about ASBMB, see the Society's Web site at www.asbmb.org.

American Society for Biochemistry and Molecular Biology

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
More Stem Cells News and Stem Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...