Iowa State researchers developing wireless soil sensors to improve farming

October 10, 2008

AMES, Iowa - Ratnesh Kumar keeps his prototype soil sensors buried in a box under his desk. He hopes that one day farmers will be burying the devices under their crops.

Kumar is leading an Iowa State University research team that's developing transceivers and sensors designed to collect and send data about soil moisture within a field. Eventually the researchers are hoping the sensors will also collect data about soil temperature and nutrient content.

A major goal is to build small sensors (the prototypes are about 2 inches wide, 4 inches long and less than an inch thick) that can do their work entirely underground. The sensors won't need wires or above-ground antennas, so farmers could work right over the top of them. The sensors would also be able to report their locations. That would make it easy to find sensors if a plow were to move them or when batteries need to be replaced.

Kumar, an Iowa State professor of electrical and computer engineering, said the sensors are designed to be buried about a foot deep in a grid pattern 80 to 160 feet apart. The sensors would relay data along the grid to a central computer that would record information for researchers or farmers.

The sensors could help researchers understand precisely how water moves through a field. They could help them develop better models to predict crop growth and yield. And they could help them understand the carbon and nitrogen cycles within soils.

And those sensors could help farmers manage their nutrient and water resources. That could maximize yields and profits. And it could minimize environmental impacts.

"If nutrients are in excess of what's needed, it doesn't help the yield," Kumar said. "Those resources just drain into the environment."

Stuart Birrell, an Iowa State associate professor of agricultural and biosystems engineering and a part of the sensor research team, said the project will provide the kind of real-time, high-resolution data that researchers and producers have been looking for.

"A challenge of precision agriculture is collecting data at a high enough resolution that you can make good decisions," Birrell said. "These sensors would provide very high resolution data for producers and researchers. They would give us another data layer to explain differences in yield and help us make management decisions."

Kumar said the sensors have worked underground in preliminary, point-to-point tests. A network of multiple sensors will be buried in a research field later this fall for more testing and development.

Also working on the project are Ahmed Kamal, a professor of electrical and computer engineering; Robert Weber, the David C. Nicholas Professor of electrical and computer engineering; Amy Kaleita, an assistant professor of agricultural and biosystems engineering and graduate students Candace Batts, Giorgi Chighladze, Jing Huang and Herman Sahota.

The project is supported by a three-year, $239,999 grant from the National Science Foundation.

"The goal is to hopefully have these sensors in production agriculture," Kumar said. "But first we need to develop them and answer more questions about how cost-effective they could be."
-end-
Contacts:
Ratnesh Kumar, Electrical and Computer Engineering, (515) 294-8523, rkumar@iastate.edu
Stuart Birrell, Agricultural and Biosystems Engineering, (515) 294-2874, sbirrell@iastate.edu
Mike Krapfl, News Service, (515) 294-4917, mkrapfl@iastate.edu

Iowa State University

Related Soil Moisture Articles from Brightsurf:

RUDN University soil scientist: Deforestation affects the bacterial composition of the soil
A soil scientist from RUDN University studied the effect of forest conversion on the properties of the soil: its acidity, carbon and nitrogen resources, bacterial composition, and the activity of microorganisms.

Transparent soil-like substances provide window on soil ecology
By using two different transparent soil substitutes, scientists have shown that soil bacteria rely on fungi to help them survive dry periods, says a study published today in eLife.

Short-term moisture removal can eliminate downy mildew of spinach
Scientists at the University of Arkansas explored the relationship between available moisture and disease establishment and in a recent article they demonstrated that removing moisture decreased both spore survival and disease.

Self-watering soil could transform farming
A new type of soil created by engineers at The University of Texas at Austin can pull water from the air and distribute it to plants, potentially expanding the map of farmable land around the globe to previously inhospitable places and reducing water use in agriculture at a time of growing droughts.

RUDN University soil scientist: Paddy soil fertilization can help reduce greenhouse effect
A soil scientist from RUDN University discovered the effect of fertilization on the ability of the soil to retain carbon.

Soil bogging caused by climate change adds to the greenhouse effect, says a RUDN University soil sci
A soil scientist from RUDN University studied soil samples collected at the Tibetan Plateau and discovered that high soil moisture content (caused by the melting of permafrost and glaciers) leads to further temperature increase.

Global warming threatens soil phosphorus, says a soil scientist from RUDN University
A soil scientist from RUDN University found out that the resources of organic phosphorus in the soils of the Tibetan Plateau could be depleted because of global warming.

Iron is to blame for carbon dioxide emissions from soil, says a soil scientists from RUDN
Iron minerals and bacteria can be the main agents of carbon dioxide emissions from the soil.

Heavy metals make soil enzymes 3 times weaker, says a soil scientist from RUDN University
Heavy metals suppress enzyme activity in the soil by 3-3.5 times and have especially prominent effect on the enzymes that support carbon and sulfur circulation.

A continuous simulation of Holocene effective moisture change in East and Central Asia
Based on a transient climate evolution model, a lake energy balance model and a lake water balance model, the effective moisture change during the Holocene in East and Central Asia is continuously and quantitatively traced by constructing a virtual lake system.

Read More: Soil Moisture News and Soil Moisture Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.