Nav: Home

Insights into the development of sperm and egg cell precursors in the embryo

October 10, 2016

A bit like someone looking into a mirror reflected in another mirror, as one new life is developing as an embryo, the capacity to produce the next generation of life is already being established in that embryo. Research carried out between the groups of Wolf Reik and Peter Rugg-Gunn in the Epigenetics research programme at the Babraham Institute have investigated the early stages of the development of cells called primordial germ cells and developed strategies to generate these cells in the lab. Primordial germ cells give rise to sperm or egg cells and, in humans, are already present in embryos at the second week of development.

As reported in the latest issue of Developmental Cell, the researchers developed a method to generate primordial germ cell 'lookalike' cells to look in detail at what was happening at the epigenetic level, comparing what happens in cells from mice and humans. Epigenetics refers to reversible modifications to DNA that don't affect the DNA sequence but alter how genes are read. The specific pattern of epigenetic marks in a cell type specifies identity and this epigenetic control is vital to what makes our cells different, for example a skin cell from a liver cell, when they all contain the same genetic instructions.

The development of primordial germ cells is characterised by widespread epigenetic remodelling. These cells need to 'forget' their own programmed instructions and create a blank slate for the blueprint of either a sperm or egg cell to be laid down.

Creating and analysing accurate 'lookalike' primordial germ cells opened the window on characterising the early stages of specification of these cells and the regulation of developmental timings. This insight has been previously limited by the difficulty of obtaining these cells from embryos. The generation of human 'lookalike' primordial germ cells is also of importance for future fertility studies and analysis of potential transgenerational epigenetic inheritance in humans.

As explained by lead researcher, Dr Ferdinand von Meyenn, postdoctoral researcher in the Epigenetics research programme at the Babraham Institute and first author on the paper: "Our method establishes a reliable system that can be used to explore the early stages of epigenetic reprogramming in primordial germ cell-like cells and how this is regulated in the generation of reproductive cells. This method also provides an experimental system for future fertility studies in humans. Our side by side analysis uncovers the dynamics of epigenetic programming occurring in germ cell development at single base resolution in human and mouse cells."

Professor Wolf Reik, Head of the Epigenetics research programme, said: "Charting the different developmental timings in the early reprogramming events observed in the human and mouse-derived cells gives the first mechanistic insight into how these events are regulated which is tremendously exciting. The next steps are to capture what happens in the later stages of primordial germ cell development and the related epigenetic events. In particular, this new method will allow us to answer questions regarding transgenerational epigenetic inheritance in humans."
-end-
This research was funded by the Biotechnology and Biological Sciences Research Council, The Wellcome Trust, the EU BLUEPRINT Consortium and the EpiGeneSys FP7 EC-funded Network of Excellence. Ferdinand von Meyenn was funded by a Postdoctoral Fellowship of the Swiss National Science Foundation.

Babraham Institute

Related Development Articles:

Development of a novel vaccine for Zika
Research presented by Farshad Guirakhoo, Ph.D., Chief Scientific Officer, GeoVax, Inc., at the ASM Microbe 2017 meeting showed a new Zika virus vaccine that gives 100 percent protection in mice.
New insight into brain development disorder
Two years ago, the Zika virus drew attention to microcephaly, a developmental disorder in which the brain and skull display inhibited growth.
A closer look at brain organoid development
Researchers already have succeeded in growing so-called 'cerebral organoids' in a dish -- clusters of cells that self-organize into small brain-like structures.
New method in synthesis and development for pharmaceuticals
The work by Prof. Cheol-Min Park (School of Natural Science) at Ulsan National Institute of Science and Technology (UNIST) has been selected to appear on the front cover of the prestigious journal, ChemComm.
Development of a novel carbon nanomaterial 'pot'
A novel, pot-shaped, carbon nanomaterial developed by researchers from Kumamoto University, Japan is several times deeper than any hollow carbon nanostructure previously produced.
Too much 'noise' can affect brain development
Using cutting-edge imaging technology, University of California, Irvine biologists have determined that uncontrolled fluctuations (known as 'noise') in the concentration of the vitamin A derivative retinoic acid can lead to disruptions in brain organization during development.
Master switch for brain development
Scientists at the Institute of Molecular Biology in Mainz have unraveled a complex regulatory mechanism that explains how a single gene can drive the formation of brain cells.
Bridging the biomedical development gap
To date, the Blavatnik Biomedical Accelerator has provided $12.5 million to support 68 research projects, approximately half of which have led to industry partnerships.
What clinicians need to know about bilingual development in children
Bilingual children pose unique challenges for clinicians, and, until recently, there was little research on young bilinguals to guide clinical practice.
Have we achieved the millennium development goals?
As the deadline for the millennium development goals approaches, experts writing in The BMJ this week take stock of the successes, failures, and oversights, and look ahead to the next phase -- the sustainable development goals.

Related Development Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".