Nav: Home

Gestational age measured via DNA methylation

October 10, 2016

Researchers have developed a method for estimating developmental maturity of newborns. It is based on tracking DNA methylation, a structural modification of DNA, whose patterns change as development progresses before birth.

The new method could help doctors assess developmental maturity in preterm newborns and make decisions about their care, or estimate the time since conception for a woman who does not receive prenatal care during pregnancy. As a research tool, the method could help scientists study connections between the prenatal environment and health in early childhood and adulthood.

The study, led by Alicia Smith, PhD and Karen Conneely, PhD, used blood samples from more than 1,200 newborns in 15 cohorts from around the world. The results are published in Genome Biology.

Smith is an Associate Professor and Vice Chair of Research for the Department of Gynecology and Obstetrics in the School of Medicine, and Conneely is an Assistant Professor in the Department of Human Genetics. The first author, Anna Knight, is a graduate student in the Genetics and Molecular Biology Program.

Gestational age, is normally estimated by obstetricians using ultrasound during the first trimester, by asking a pregnant woman about her last menstrual period, or by examining the baby at birth. Ultrasound is considered to be the most precise estimate of gestational age.

This work extends upon earlier studies of DNA methylation patterns that change over development and predict age and age-related health conditions in children and adults.

The Emory team gathered DNA methylation data from previous studies examining live births and health outcomes, and used an unbiased statistical learning approach to select 148 DNA methylation sites out of many thousands in the genome.

By examining methylation at those sites, gestational age could be accurately estimated between 24 and 44 weeks, the authors report. The median difference between age determined by DNA methylation and age determined by an obstetrician estimate was approximately 1 week.

The researchers also found that the difference between a newborn's age predicted by DNA methylation and by an obstetrician may be another indicator of developmental maturity, and is correlated with birthweight, commonly used as an indicator of perinatal health.

In a group of newborns from Tennessee, the researchers observed that developmental maturity based on DNA methylation tended to be lower for the children of women in the Medicaid program compared to those with private health insurance. It is not yet clear if this finding can be extended to other groups, the authors say.

"This association supports the hypothesis that prenatal adversity associates with changes in neonatal methylation consistent with a delayed developmental age, which may have consequences later in life," the authors write.
-end-
This research was supported by grants from the National Institute on Minority and Health Disparities (R01MD009064), the National Health and Medical Research Council of Australia, and the Urban Child Institute.

Emory Health Sciences

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".