Nav: Home

Composite biomaterial scaffolds enable patterning of tissue architecture and cell identity

October 10, 2016

Three-dimensional culture of stem cells in biomaterials has recently enabled the formation of complex cellular structures and miniature organoid tissues, including tissues resembling brain, spinal cord, retina, liver, and kidney. In order to improve this technology further, research published in the Journal of Tissue Engineering describes new designs for unique biomaterial scaffolds that incorporate patterned architectures and regional compartments of signaling factors that can more intricately guide tissue development. These designs enable more comprehensive control over cell fate and tissue architecture, and also establish a platform for studying the effects of concentration gradients of a variety of signaling factors on tissue development.

The ability to form specific molecular concentration gradients within tissue cultures provides several unique advantages and capabilities. Dr. Richard J. McMurtrey, author of the work, said, "The compartments of signaling factors that are designed into the synthetic tissue constructs can form concentration gradients as a result of natural diffusion behaviors, and these gradients can control numerous processes like stem cell differentiation, regional identity, axis patterning, and tissue architecture." As examples, Dr. McMurtrey describes how regional gradients of sonic hedgehog protein (SHH), wnt protein (WNT), bone morphogenic protein (BMP), fibroblast growth factor (FGF), retinoic acid (RA), and reelin protein (RELN) can influence the formation of the nervous system in both innate neural tissue and in three-dimensional (3D) organoids. By separating factors into localized molecular gradients, researchers can mimic developmental cues and can thereby pattern ventral/dorsal and rostral/caudal aspects of the organoid tissue.

Restoring function in damaged neural tissue is likely to require stem cells that can go through similar developmental processes as they did during early development in the womb. "The ability to replicate natural developmental processes in 3D culture of patient-derived stem cells is essential for creating targeted regeneration of specific areas of the brain and spinal cord," said Dr. McMurtrey. "Although there is much we have discovered about how neurodevelopment occurs, there is still much more to learn about all the detailed and complex neurodevelopmental processes that form the vast array of regions, structures, and functions in the brain and spinal cord, and these new tissue designs will help expand our capabilities to study and control these complex processes."

Importantly, the tissue construct designs presented in the paper also enable an array of important investigations in tissue development, disease mechanisms, drug toxicologies, as well as regenerative medicine applications. The combination of biomaterials with stem cells can provide many advantages over stem cell applications alone, including improved cell survival, improved guidance of differentiation processes, improved cellular integration into host tissue, improved control of tissue patterning, and improved migration and sprouting of neural connections. Nevertheless, much research still remains to be done on the optimal combinations of biomaterials, signaling factors, and scaffolding architectures needed to optimally prepare cells for transplantation and integration into specific tissues of the body, and it is hoped that this technology will someday provide capabilities to guide reconstruction of neural architecture in the human nervous system. Dr. McMurtrey stated, "It is a privilege to work on research that is both fascinating and imperative for treating neurological injuries that we simply cannot heal today."
-end-
Reference: McMurtrey RJ. Multi-Compartmental Biomaterial Scaffolds for Patterning Neural Tissue Organoids in Models of Neurodevelopment and Tissue Regeneration. J. Tissue Engineering. 2016; 7:1-8. doi: 10.1177/2041731416671926

Institute of Neural Regeneration & Tissue Engineering

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".