Nav: Home

Stable molecular state of photons and artificial atom discovered

October 10, 2016

Summary
  • A new state of a superconducting artificial atom dressed with virtual photons is discovered
  • It provides a clear example for a forty-year-old problem in atomic physics
  • It may contribute to the development of quantum technologies such as quantum communication or quantum metrology
Researchers at the National Institute of Information and Communications Technology (NICT, President: Dr. Masao Sakauchi), in collaboration with researchers at the Nippon Telegraph and Telephone Corporation (NTT, Representative Member of the Board and President, Mr. Hiroo Unoura) and the Qatar Environment and Energy Research Institute (QEERI, Acting Executive Director: Dr. Marwan Khraisheh) have discovered qualitatively new states of a superconducting artificial atom dressed with virtual photons. The discovery was made using spectroscopic measurements on an artificial atom that is very strongly coupled to the light field inside a superconducting cavity. This result provides a new platform to investigate the interaction between light and matter at a fundamental level, helps understand quantum phase transitions and provides a route to applications of non-classical light such as Schrödinger cat states. It may contribute to the development of quantum technologies in areas such as quantum communication, quantum simulation and computation, or quantum metrology.

This result will be published online in the October 10 (London time) issue of the journal Nature Physics.

Background and Challenges

The indispensable technologies in modern life such as a time system measured by an atomic clock and a secure and energy-efficient communications system are based on the fundamental science of the interaction between light and matter at the single-photon level. The absorption and emission of light from any device is explained based on the interaction of light and atoms. A fundamental question in atomic physics, "How strong can the coupling of light and an atom be?" has not been answered in spite of years of research, because it is not easy to find appropriate methods to realize very strong coupling.

It was predicted over forty years ago that if the coupling is extremely strong a qualitatively new lowest energy state (the ground state) of light and an atom should be realized. A debate soon started as to whether this prediction would still apply when realistic conditions are considered. A few years ago, our collaborator at QEERI, Dr. Sahel Ashhab, performed theoretical investigations and identified desirable conditions for achieving this new state using superconducting circuits.

Achievements

In the experiment, we used a microfabricated superconducting harmonic oscillator and a superconducting artificial atom (quantum bit or qubit) whose electronic states behave quantum mechanically, just like a natural atom. By carefully designing a superconducting persistent-current qubit interacting with an LC harmonic oscillator that has a large zero-point fluctuation current via a large shared Josephson inductance, we found the new ground state as predicted theoretically.

The total energy of the qubit and the oscillator is the sum of the photon energy in the oscillator, the qubit energy, and the coupling energy binding the photons to the qubit. Taking advantage of the macroscopic quantum system, we could realize circuits with coupling energy larger than both the photon energy and the qubit energy. This situation is sometimes called 'deep strong coupling'.

In addition, we have observed that the transitions between energy levels are governed by selection rules stemming from the symmetry of the entangled energy eigenstates, including the ground state.

Prospect

We plan to test whether deep strong coupling is possible or not using more than one superconducting artificial atom (qubit), which remains a question of debate. We will also try to actively manipulate this new molecular state of photons and artificial atoms, for example, to observe and control the dynamics of photon absorption and emission, and to demonstrate new methods of entanglement generation.
-end-


National Institute of Information and Communications Technology (NICT)

Related Photons Articles:

The multi-colored photons that might change quantum information science
With leading corporations now investing in highly expensive and complex infrastructures to unleash the power of quantum technologies, INRS researchers have achieved a breakthrough in a light-weight photonic system created using on-chip devices and off-the-shelf telecommunications components.
*Ring, Ring* 'Earth? It's space calling, on the quantum line'
In a landmark study, Chinese scientists report the successful transmission of entangled photons between suborbital space and Earth.
Unpolarized single-photon generation with true randomness from diamond
The Tohoku University research group of Professor Keiichi Edamatsu and Postdoctoral fellow Naofumi Abe has demonstrated dynamically and statically unpolarized single-photon generation using diamond.
Solar cell design with over 50 percent energy-conversion efficiency
Solar cells convert the sun's energy into electricity by converting photons into electrons.
'Indistinguishable photons' key to advancing quantum technologies
Indistinguishable photons are critical for quantum information processing, and researchers are tapping nitrogen impurity centers found within gallium arsenide to generate them -- making a significant contribution toward realizing a large number of indistinguishable single-photon sources.
New research into light particles challenges understanding of quantum theory
Scientists have discovered a new mechanism involved in the creation of paired light particles, which could have significant impact on the study of quantum physics.
New portal to unveil the dark sector of the universe
IBS scientists theorize a new portal to peek into the dark world.
Hubble cooperates on galaxy cluster and cosmic background
The events surrounding the Big Bang were so cataclysmic that they left an indelible imprint on the fabric of the cosmos.
Large groups of photons on demand -- an equivalent of photonic 'integrated circuit'
Holographic atomic memory, invented and constructed by physicists from the Faculty of Physics at the University of Warsaw, is the first device able to generate single photons on demand in groups of several dozen or more.
First step towards photonic quantum network
Advanced photonic nanostructures are well on their way to revolutionizing quantum technology for quantum networks based on light.

Related Photons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".