Nav: Home

Energy hijacking pathway found within photosynthesis

October 10, 2016

An unexpected source of inefficiency within a photosynthetic enzyme has been identified by scientists. The issue also adversely affects the performance of devices which are used to model artificial photosynthesis - a biomimicry process which is central to efforts to generate sustainable fuel by converting sunlight into chemical energy.

The study, carried out by a University of Cambridge team, reveals hitherto-unknown properties within Photosystem II, the enzyme which kick-starts photosynthesis in plants by extracting electrons from water using sunlight.

Specifically, the group were able to analyse and describe a "pathway" by which light energy needed to extract the electrons was being hijacked by oxygen, which is a by-product of the process.

They were able to bypass this competing pathway temporarily by removing the electron-stealing oxygen. By further embedding the Photosystem 2 in a suitable electron conducting matrix, they were able to boost the efficiency of a semi-artificial photosynthetic system. Such systems are typically created by wiring together parts of the natural photosynthetic machinery found in plants with synthetic materials.

This type of hybrid structure serves as a blueprint for wholly-artificial systems which scientists are trying to develop. The aim is to use these to imitate and surpass natural photosynthesis, so that sunlight can be used to efficiently "split" water into its component parts, hydrogen and oxygen, enabling the hydrogen to be extracted as fuel.

The research, published in the journal Nature Chemical Biology, was carried out by a team from the Reisner Lab in the Department of Chemistry at the University of Cambridge. The Lab specialises in developing sustainable fuel-producing systems, based on artificial photosynthesis.

Dr Jenny Zhang, a Research Associate at St John's College, University of Cambridge, and the paper's first author, said: "Our study used a technique called protein-film photoelectrochemistry, which allows us to see the process by which charges in the enzyme are transferred to the electrode upon light irradiation."

"This helps us to know more about the enzyme. We were able to see that there was a pathway by which electrons were being diverted away from the electrode, reducing its efficiency, and then address that. It is likely that the same competing pathway problem will crop up in other synthetic solar fuel devices that we try to manufacture, so the importance of this insight extends far beyond Photosystem II."

"In addition, it is possible that this pathway exists in nature for all photosystem-like enzymes, contributing towards lowered efficiency within photosynthetic organisms."

In nature, Photosystem II performs part of the "water-splitting" reaction that researchers are keen to imitate, efficiently and at low cost, so that renewably-produced hydrogen can be extracted as fuel. This would be a starting material for making synthetic petrol and fertiliser.

Water-splitting is actually a two-part process, in which water is first broken down into oxygen and protons, and the protons are then combined to make hydrogen. Crucially, Photosystem II uses energy from sunlight to carry out the first phase - water oxidation. It achieves this at high rates, using only Earth-abundant materials. This is something that scientists struggle to mimic.

As the water is oxidised, a flow of electrons are released across the enzyme, which are used in the second stage to stick the protons together. In hybrid systems, these are first gathered by an electrode, but the wiring between the enzymes and the electrodes has been disappointingly inefficient to date, making it difficult for humans to control and exploit the enzymes in useful ways.

The new study offers a major clue about why those efforts have been so underwhelming. Alongside the main route by which electrons are shuttled across the enzyme, a second - and counterproductive - pathway exists. This only became visible in the protein-film electrochemistry experiments.

The second pathway plunders electrons from any available source, notably the electrode. It draws them towards oxygen molecules that have already been created within the enzyme, as part of the oxidation process. In effect, it "steals" energy, short-circuiting and reducing the system's overall performance.

As well as unfavourable, the effect is also potentially destructive. As the electrons are taken up by the molecular oxygen, they form a reactive compound, hydrogen peroxide, which damages the enzyme and the system that contains it. Effectively, the pathway "self-harms" the system.

While in living organisms the formation of these damaging species is likely to be mitigated by other natural processes, if humans are to manufacture anything like Photosystem II in the future to create artificial photosynthetic devices, they will have to find a way to do the same thing.

The group believe, however, that the prospects for doing so are relatively good. Zhang explored strategies for controlling the competing pathway in the new study. She demonstrated that the enzymes' performance is enhanced by the pathway's removal, and that this makes the task of measuring the enzyme's physical properties easier, which is important to its value as a blueprint system.

"We have lots of ideas about how to resolve the competing pathways problem," she added. "It may involve making careful choices about the materials with which we make the electrode, or coating the sides of the enzyme so that energy cannot be stolen."
-end-
The study, Competing charge transfer pathways at the Photosystem II-electrode interface, is published in Nature Chemical Biology. (DOI: 10.1038/nchembio.2192)

St John's College, University of Cambridge

Related Hydrogen Articles:

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.
Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.
Observing hydrogen's effects in metal
Microscopy technique could help researchers design safer reactor vessels or hydrogen storage tanks.
The 'Batman' in hydrogen fuel cells
In a study published in Nature on Jan. 31, researchers at the University of Science and Technology of China (USTC) report advances in the development of hydrogen fuel cells that could increase its application in vehicles, especially in extreme temperatures like cold winters.
Paving the way for more efficient hydrogen cars
Hydrogen-powered vehicles emit only water vapor from their tailpipes, offering a cleaner alternative to fossil-fuel-based transportation.
New catalyst produces cheap hydrogen
QUT chemistry researchers have discovered cheaper and more efficient materials for producing hydrogen for the storage of renewable energy that could replace current water-splitting catalysts.
The faint glow of cosmic hydrogen
A study published recently in Nature magazine, in which Ana Monreal-Ibero, a researcher at the Instituto de AstrofĂ­sica de Canarias (IAC) is a participant, reveals the presence of a hitherto undetected component of the universe: large masses of gas surrounding distant galaxies.
New technology improves hydrogen manufacturing
INL researchers demonstrated high-performance electrochemical hydrogen production at a lower temperature than had been possible before.
Hydrogen transfer: One thing after the other
Hydride transfer is an important reaction for chemistry (e.g., fuel cells), as well as biology (e.g., respiratory chain and photosynthesis).
Is hydrogen the fuel of the future?
As the race to find energy sources to replace our dwindling fossil fuel supplies continues apace, hydrogen is likely to play a crucial role in the future.
More Hydrogen News and Hydrogen Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.