Nav: Home

Scientists find new metabolic pathways to resist viruses

October 10, 2016

Viral infection is one of the leading medical challenges of the 21st Century, ranging from the Hepatitis C Virus (HCV) epidemic affecting 3% of the global population, to recent outbreaks of West Nile, Zika, and Ebola viruses.

Viruses are parasites that lack the basic metabolic machinery needed to replicate. To get around this problem, they hijack the metabolic machinery of their hosts in order to complete their lifecycle and propagate. However, scientists still don't have a good understanding of the metabolic interplay between viruses and the organisms they infect. This is mainly due to the complex interplay between human genes and metabolic processes.

Now, in new research appearing in the journal Nature Chemical Biology, an international research group led by the Hebrew University of Jerusalem systematically identified an array of genetic switches that controls the metabolic response to Hepatitis C Virus infection. By carefully selecting drugs that target these genetic switches, the researchers were able to show how these genes control metabolic processes, such as glucose and lipid metabolism, and establish how these processes affect the virus lifecycle. Surprisingly, while some metabolic processes were beneficial for the virus, for example by providing it with building blocks for its genetic material allowing it to replicate faster, other metabolic processes were surprisingly anti-viral, disturbing the viral lifecycle.

"This is the first indication that our cells can block replication of Flaviviridae viruses like HCV and Zika by denying them from critical building blocks the viruses need to survive," said Prof. Yaakov Nahmias, Director of the Alexander Grass Center for Bioengineering at the Hebrew University of Jerusalem, who led the study. "Our results present a new approach to treat virus infection by targeting the genetic regulation of metabolic processes on which the virus rely."

Nuclear Receptors

Metabolism is a complex phenomenon that is primarily regulated by genetic switches called nuclear receptors. Nuclear receptors are a family of proteins found within cells that are activated by metabolites such as fatty acids or glucose, acting as sensors that allow cells to sense and respond to changes in nutrition (e.g. breakfast) by regulating the expression (i.e. activation) of hundreds of genes.

Viruses such as HCV can interfere with this metabolic regulation. When this happens, it results in fatty liver disease and diabetes in infected patients.

To find the mechanism by which viruses such as HCV can interfere with metabolic regulation, the researchers used a new laboratory model of human liver cells developed by Prof. Nahmias. By mapping out the metabolism of both infected liver cells and normal liver cells, they were able to focus on disturbed metabolic processes, and identify the nuclear receptors responsible for their dysregulation.

"This is a fascinating approach," said Prof. Oren Shibolet, head of the Department of Gastroenterology at Tel Aviv Sourasky Medical Center and Tel-Aviv University and a co-author of the study, "as the same methodology can be applied to study the metabolic regulation of liver cancer and other infections to possibly identify new therapeutic targets."

Once the researchers identified the genetic switches controlling the disturbed metabolic processes, they blocked each nuclear receptor using pharmaceuticals, and studied the effects of this inhibition on the virus. While blocking glucose metabolism was detrimental to the virus, blocking lipid metabolism had the reverse effect, actually increasing HCV replication. These findings were validated in a small cohort of HCV patients.

The authors point out that the Flaviviridae family of viruses, which includes Hepatitis C, Dengue, West Nile, Yellow Fever, and Zika viruses, were previously considered to be expert metabolic engineers that optimized the hijacking of host metabolic machinery to create more viruses. "It was quite surprising to see that human liver cells could use metabolic processes to resist viral infection," said Prof. Jörg Timm, a co-author from the Institute of Virology at the University of Düsseldorf. "It went against our common understanding of viruses as expert metabolic engineers, suggesting new avenues to target virus infection."
-end-
Participating institutions include The Hebrew University of Jerusalem, Harvard Medical School, Broad Institute of MIT and Harvard, Tel Aviv University, University Duisburg-Essen, and the University of Düsseldorf.

The Hebrew University of Jerusalem

Related Hepatitis Articles:

Hepatitis C increasing among pregnant women
Hepatitis C infections among pregnant women nearly doubled from 2009-2014, likely a consequence of the country's increasing opioid epidemic that is disproportionately affecting rural areas of states including Tennessee and West Virginia.
WHO's Global Hepatitis Report sets baseline to eliminate viral hepatitis by 2030
The World Hepatitis Alliance today welcomes the publication of the first-ever Global Hepatitis Report by the World Health Organization (WHO), which includes new data on the prevalence and global burden of viral hepatitis.
Elimination of viral hepatitis by 2030: What's needed and how do we get there?
This first European Action Plan provides an important driver to aid countries in their fight against viral hepatitis, to which ECDC had the opportunity to contribute directly.
Discovery of new Hepatitis C virus mechanism
Researchers at Osaka University, Japan uncovered the mechanisms that suppress the propagation of the hepatitis C virus with the potential of improving pathological liver conditions.
Is Europe ready to eliminate viral hepatitis?
Currently, Europe records around 57,000 newly diagnosed acute and chronic cases of hepatitis B and C each year.
Why baby boomers need a hepatitis C screening
Hepatitis C affects a disproportionate amount of older Americans, born between 1945 and 1965.
Counterattack of the hepatitis B virus
The hepatitis B virus (HBV) infects liver cells. Drugs are available to treat HBV, but they rarely cure the infection, and so the virus typically returns after the treatment ends.
Hepatitis C tied to increased risk of Parkinson's
The hepatitis C virus may be associated with an increased risk of developing Parkinson's disease, according to a study published in the Dec.
The hepatitis A virus is of animal origin
The hepatitis A virus can trigger acute liver inflammation which generally has a mild course in small children but which can become dangerous in adults.
Modeling the helicase to understand hepatitis C
NS3 is an enzyme specific to the hepatitis C virus.

Related Hepatitis Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".