Nav: Home

UHN research team maps genomic landscape of schwannoma tumours

October 10, 2016

(TORONTO, Canada - Oct. 10, 2016) - Researchers from the University Health Network (UHN); Toronto Western Neurosurgery Division and MacFeeters Hamilton Neuro-oncology Program at the Princess Margaret Cancer Centre have described the genomic landscape of schwannomas in a paper published online today in Nature Genetics.

Schwannomas are one of the most common posterior fossa brain tumours and the most common spinal tumour. They stem from schwann cells, which are the cells that surround nerves and are critical in nerve function. Schwannomas commonly affect one of the cranial nerves - typically the acoustic/vestibular nerve (associated with hearing), as well as nerves leaving the spinal cord towards various sites in the body. While schwannomas are benign tumors, often they can cause debilitating symptoms depending on their location and size. Schwannomas can cause significant long-lasting neurological deficits due to a compromising of the nerve they arise from or a compression of the brain and spinal cord structures they compress. In rare cases, there can be swelling of the brain or death depending on the location of the tumours. Schwannomas can occur either sporadically or in the context of a genetic predisposition called Neurofibromatosis.

The team performed a comprehensive and integrative multi-platform molecular analysis of brain and spinal schwannomas, describing new mutations in genes that are associated with the development of schwannomas. Principal Investigator Dr. Gelareh Zadeh says that this work has identified new molecular alterations as drivers of schwannoma growth that have not previously been known and notes that the most exciting aspect of the study is that the results can change the course of treatment for some schwannomas. Dr. Zadeh, a Neurosurgeon at Toronto Western Hospital at UHN, holds the Wilkins Family Chair in Brain Tumour Research, is a Scientist, at the MacFeeters-Hamilton Neuro-oncology Program at Princess Margaret Cancer Centre and is the Head of Surgical Oncology at UHN. She is an Associate Professor in the Department of Surgery at the University of Toronto.

"Our work underlines the value of translational science carried out best through an international team approach," says Dr. Zadeh. "We analyzed clinical samples using state-of-the-art molecular techniques in collaboration with expertise within UHN and internationally to establish fusion breakpoints, mutations, and targeted molecular sequencing of tumour samples. The combined effort from these investigators has allowed them to create the possibility that patients with schwannomas can benefit from a personalized approach to their tumour when treatment options are being considered. I must recognize Sameer Agnihotri, who is the first author on this elegant paper describing all of the work necessary to achieve this result, and Dr. Kenneth Aldape, who has been instrumental in guiding the focus of the project."

The team profiled 125 clinically annotated schwannoma tumour samples and, using molecular testing, was able to identify subsets of tumours. One subset in particular showed a novel gene fusion (abnormal joining of 2 genes together). The two genes, called HTRA1 and SH3PXD2A, are physically separated in normal cells, but in a subset of schwannoma tumors, show a rearrangement, whereby a portion of one gene is joined to a portion of the other, creating a fusion gene. The authors demonstrate that the fusion gene has cellular functions consistent with the promotion of tumour development, suggesting that it functions as a "driver" of tumorigenesis. Since the fusion is unique to tumor cells, it represents an ideal candidate for therapeutic targeting, since abolishing its function would represent a tumour-specific approach that would spare normal cells in the body. The fusion occurs in the same site future work by the investigators will focus on targeting this abnormal fusion gene for diagnostic and therapeutic development.

"Personalized medicine describes an approach that requires the understanding of a patient's tumour cell structure," says Dr. Aldape, the paper's co-Senior Author. "This work demonstrates that a molecular understanding of tumours such as schwannomas will redefine the existing understanding and approaches toward the diagnosis and classification of these tumours. With this knowledge we can move on to develop individual treatment approaches to the various genetic mutations, in particular the fusion proteins." Dr Aldape is a molecular neuro-pathologist, Senior Scientist and Director of MacFeeters-Hamilton Neuro-oncology Program at Princess Margaret Cancer Centre.

Dr. Sameer Agnihotri, first author of the study, highlights the importance of the fusion protein through a series of elegant studies that demonstrate how the fusion promotes the development of schwannomas via its effect on cell proliferation and cell invasion. He notes that "our work demonstrates that tumours are dependent on this fusion protein, making it an ideal therapeutic target for a subset of patients with treatment-refractory schwannoma." Dr. Agnihotri is a Scientific Associate in the MacFeeters-Hamilton Neuro-oncology Program.
-end-
Drs. Zadeh, Aldape and Agnihotri have a research program funded by Canadian Institute for Health Research (CHIR), Princess Margaret Cancer Foundation, the Toronto General and Toronto Western Hospital Foundation through the Wilkins Family Chair in Brain Tumour Research, the Terry Fox Research Institute, Elizabeth Raab Neurofibromatosis Program and the MacFeeters-Hamilton Neuro-Oncology Research Program.

About University Health Network

University Health Network consists of Toronto General and Toronto Western Hospitals, the Princess Margaret Cancer Centre, Toronto Rehabilitation Institute, and The Michener Institute of Education at UHN. The scope of research and complexity of cases at University Health Network has made it a national and international source for discovery, education and patient care. It has the largest hospital-based research program in Canada, with major research in cardiology, transplantation, neurosciences, oncology, surgical innovation, infectious diseases, genomic medicine and rehabilitation medicine. University Health Network is a research hospital affiliated with the University of Toronto. http://www.uhn.ca

University Health Network

Related Spinal Cord Articles:

Scientists find mechanism behind precise spinal cord development
Scientists have uncovered how nerve cells in the spinal cord are organized in precise patterns during embryo development -- a finding that could give insight into regenerative medicine.
Discovery offers new hope to repair spinal cord injuries
Scientists at the Gladstone Institutes created a special type of neuron from human stem cells that could potentially repair spinal cord injuries.
Generating improvement in spinal cord injuries
Results from an ongoing treatment for spinal cord injury research study were announced on Jan.
€1.3m study could pave way for therapies to repair spinal cord
Brain scientists are using tropical fish to investigate how the spinal cord can be coaxed to repair itself after injury.
A secret ingredient to help heal spinal cord injuries?
Researchers have identified a protein in zebrafish that facilitates healing of major spinal cord injuries.
A review on the therapeutic antibodies for spinal cord injury
Spinal cord injury (SCI) causes long-lasting damage in the spinal cord that leads to paraparesis, paraplegia, quadriplegia and other lifetime disabilities.
Improving cell transplantation after spinal cord injury: When, where and how?
Spinal cord injuries are mostly caused by trauma, often incurred in road traffic or sporting incidents, often with devastating and irreversible consequences.
Protective effect of genetically modified cord blood on spinal cord injury in rats
Researchers of Kazan Federal University genetically modified cord blood which managed to increase tissue sparing and numbers of regenerated axons, reduce glial scar formation and promote behavioral recovery when transplanted immediately after a rat contusion spinal cord injury.
New role identified for scars at the site of injured spinal cord
For decades, it was thought that scar-forming cells called astrocytes were responsible for blocking neuronal regrowth across the level of spinal cord injury, but recent findings challenge this idea.
Aging diminishes spinal cord regeneration after injury
Researchers at University of California, San Diego School of Medicine and University of British Columbia (UBC) have determined that, in mice, age diminishes ability to regenerate axons, the brain's communication wires in the spinal cord.

Related Spinal Cord Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".