Nav: Home

'Snotty gobble' could be good weed controller

October 10, 2016

A native parasitic plant found commonly throughout south-eastern Australia, is showing great promise as a potential biological control agent against introduced weeds that cost millions of dollars every year to control.

University of Adelaide research has found that the native vine Cassytha pubescens, better known as snotty gobble, is able to kill gorse, blackberry and Scotch broom, while not damaging native shrubs.

"Parasitic plants attach to host plants via 'suckers', latching on and sucking out the water and nutrients so they can grow at the expense of the plants they infect," says Robert Cirocco, recent PhD graduate in the University's School of Biological Sciences.

"Cassytha is particularly successful, growing on pretty much anything, and very effective against several designated 'Weeds of National Significance' such as European gorse, blackberry and Scotch broom.

"These introduced weeds cost millions of dollars annually to eradicate from farmland, forestry, roadsides, national parks and other environmental areas. They have significant negative impacts on native vegetation and biodiversity and can increase bushfire risk. They are very hard to get rid of because they produce large amounts of seeds that may remain viable in the soil for decades.

"Cassytha, as a promising native biocontrol agent, has huge potential in cutting costs of weed control, and reducing the negative impact of weeds on the environment."

The most recent research, published in the journal New Phytologist by Dr Cirocco, Professor Jennifer R. Watling and Associate Professor José M. Facelli, shows that Cassytha pubescens strongly affects performance of gorse, (which is a nitrogen-fixing legume), regardless of the nitrogen condition of the soil. A native legume, Acacia paradoxa, was much less affected.

"Parasitic plants are well known to remove nitrogen from their host plants but little was known about whether nitrogen in the soil affects their impact on host plants that are legumes, including gorse," says Dr Cirocco.

"In low nitrogen environments, legumes boost their relationships with nitrogen-fixing bacteria, which comes at an additional energy cost to the plant. It was possible that plants could be more vulnerable to Cassytha under low nitrogen.

"However, we found that manipulation of nitrogen supply had no influence on the effect of Cassytha on either the introduced weed or native legume plant host. These findings suggest that Cassytha continues to show promise as a native biocontrol for major invasive shrubs in Australia, while not damaging native plants, regardless of soil nitrogen conditions."

Dr Cirocco says there is still more work to be done before Cassytha could be used as a biocontrol. Field trials are needed to further evaluate its success and ensure there is no significant threat to native vegetation.
-end-
Media Contact:

Dr Robert Cirocco, PhD, School of Biological Sciences. Mobile: +61 (0)414 344 612, robert.cirocco@adelaide.edu.au

Robyn Mills, Media Officer. Phone: +61 8 8313 6341, Mobile: +61 (0)410 689 084, robyn.mills@adelaide.edu.au

University of Adelaide

Related Nitrogen Articles:

Fixing the role of nitrogen in coral bleaching
A unique investigation highlights how excess nitrogen can trigger coral bleaching in the absence of heat stress.
Universities release results on nitrogen footprints
Researchers have developed a large-scale method for calculating the nitrogen footprint of a university in the pursuit of reducing nitrogen pollution, which is linked to a cascade of negative impacts on the environment and human health, such as biodiversity loss, climate change, and smog.
A battery prototype powered by atmospheric nitrogen
As the most abundant gas in Earth's atmosphere, nitrogen has been an attractive option as a source of renewable energy.
Northern lakes respond differently to nitrogen deposition
Nitrogen deposition caused by human activities can lead to an increased phytoplankton production in boreal lakes.
Researchers discover greenhouse bypass for nitrogen
An international team discovers that production of a potent greenhouse gas can be bypassed as soil nitrogen breaks down into unreactive atmospheric N2.
More Nitrogen News and Nitrogen Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...