Nav: Home

'Snotty gobble' could be good weed controller

October 10, 2016

A native parasitic plant found commonly throughout south-eastern Australia, is showing great promise as a potential biological control agent against introduced weeds that cost millions of dollars every year to control.

University of Adelaide research has found that the native vine Cassytha pubescens, better known as snotty gobble, is able to kill gorse, blackberry and Scotch broom, while not damaging native shrubs.

"Parasitic plants attach to host plants via 'suckers', latching on and sucking out the water and nutrients so they can grow at the expense of the plants they infect," says Robert Cirocco, recent PhD graduate in the University's School of Biological Sciences.

"Cassytha is particularly successful, growing on pretty much anything, and very effective against several designated 'Weeds of National Significance' such as European gorse, blackberry and Scotch broom.

"These introduced weeds cost millions of dollars annually to eradicate from farmland, forestry, roadsides, national parks and other environmental areas. They have significant negative impacts on native vegetation and biodiversity and can increase bushfire risk. They are very hard to get rid of because they produce large amounts of seeds that may remain viable in the soil for decades.

"Cassytha, as a promising native biocontrol agent, has huge potential in cutting costs of weed control, and reducing the negative impact of weeds on the environment."

The most recent research, published in the journal New Phytologist by Dr Cirocco, Professor Jennifer R. Watling and Associate Professor José M. Facelli, shows that Cassytha pubescens strongly affects performance of gorse, (which is a nitrogen-fixing legume), regardless of the nitrogen condition of the soil. A native legume, Acacia paradoxa, was much less affected.

"Parasitic plants are well known to remove nitrogen from their host plants but little was known about whether nitrogen in the soil affects their impact on host plants that are legumes, including gorse," says Dr Cirocco.

"In low nitrogen environments, legumes boost their relationships with nitrogen-fixing bacteria, which comes at an additional energy cost to the plant. It was possible that plants could be more vulnerable to Cassytha under low nitrogen.

"However, we found that manipulation of nitrogen supply had no influence on the effect of Cassytha on either the introduced weed or native legume plant host. These findings suggest that Cassytha continues to show promise as a native biocontrol for major invasive shrubs in Australia, while not damaging native plants, regardless of soil nitrogen conditions."

Dr Cirocco says there is still more work to be done before Cassytha could be used as a biocontrol. Field trials are needed to further evaluate its success and ensure there is no significant threat to native vegetation.
-end-
Media Contact:

Dr Robert Cirocco, PhD, School of Biological Sciences. Mobile: +61 (0)414 344 612, robert.cirocco@adelaide.edu.au

Robyn Mills, Media Officer. Phone: +61 8 8313 6341, Mobile: +61 (0)410 689 084, robyn.mills@adelaide.edu.au

University of Adelaide

Related Nitrogen Articles:

Fixing the role of nitrogen in coral bleaching
A unique investigation highlights how excess nitrogen can trigger coral bleaching in the absence of heat stress.
Universities release results on nitrogen footprints
Researchers have developed a large-scale method for calculating the nitrogen footprint of a university in the pursuit of reducing nitrogen pollution, which is linked to a cascade of negative impacts on the environment and human health, such as biodiversity loss, climate change, and smog.
A battery prototype powered by atmospheric nitrogen
As the most abundant gas in Earth's atmosphere, nitrogen has been an attractive option as a source of renewable energy.
Northern lakes respond differently to nitrogen deposition
Nitrogen deposition caused by human activities can lead to an increased phytoplankton production in boreal lakes.
Researchers discover greenhouse bypass for nitrogen
An international team discovers that production of a potent greenhouse gas can be bypassed as soil nitrogen breaks down into unreactive atmospheric N2.
Bacterial mechanism converts nitrogen to greenhouse gas
Cornell University researchers have discovered a biological mechanism that helps convert nitrogen-based fertilizer into nitrous oxide, an ozone-depleting greenhouse gas.
Going against the grain -- nitrogen turns out to be hypersociable!
Nitrogen is everywhere: even in the air there is four times as much of it as oxygen.
Soybean nitrogen breakthrough could help feed the world
Washington State University biologist Mechthild Tegeder has developed a way to dramatically increase the yield and quality of soybeans.
Trading farmland for nitrogen protection
Excess nitrogen from agricultural runoff can enter surface waters with devastating effects.
Measure of age in soil nitrogen could help precision agriculture
What's good for crops is not always good for the environment.

Related Nitrogen Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".