Nav: Home

A non-proliferative signaling center kicks off tooth development

October 10, 2016

Despite extensive research on the molecular regulation of early tooth development, little is known about the cellular mechanisms driving morphogenesis prior to enamel knot formation. In a recent study, published with a spotlight in Journal of Cell Biology, researchers Laura Ahtiainen and Isa Uski from the research groups of Marja Mikkola and Irma Thesleff from the Institute of Biotechnology, University of Helsinki, tackle this conundrum. Their findings imply that the early signaling center is essential for tooth budding morphogenesis and is an important determinant of the tooth size.

- Organ development is driven by epithelial-mesenchymal tissue interactions that are mediated by a conserved set of signaling pathways. In many developing organs, signaling molecules are produced by groups of specialized cells, signaling centers, that control cell fate specification and cellular behaviors in the surrounding tissue. Teeth, hairs, and exocrine glands are organs that develop as appendages of the embryonic surface epithelium through shared placode and bud stages prior to diversification of epithelial morphogenesis, explains researcher Laura Ahtiainen.

- In teeth, a well-defined signaling center called the primary enamel knot forms at the tip of the tooth bud and is essential for further tooth morphogenesis. Despite extensive research on the molecular regulation of early tooth development, little is known about the cellular mechanisms driving morphogenesis prior to enamel knot formation. Intriguingly, gene expression pattern analyses have suggested the presence of another, earlier epithelial signaling center but its exact identity, formation, and functions have remained elusive, details researcher Isa Uski.

Initiation knot has a central role

In a recent study, published with a spotlight in Journal of Cell Biology, researchers Laura Ahtiainen and Isa Uski from the research groups of Marja Mikkola and Irma Thesleff tackle this conundrum. A systematic analysis of cell cycle dynamics using cell cycle indicator mice revealed that a non-proliferative cluster of epithelial cells emerges in tooth primordia. Co-localization with multiple signaling molecules identified these cells as the early signaling center, which the researchers named the initiation knot.

Live confocal fluorescence microscopy imaging showed that the signaling center cells reorganize dynamically, yet they do not re-enter the cell cycle or contribute to the growing tooth bud. Instead, the initiation knot drives epithelial invagination by instructing the neighboring cells to proliferate.

- These findings imply that the early signaling center is essential for tooth budding morphogenesis and is an important determinant of the tooth size. The study also identified the ectodysplasin pathway as a critical regulator of the initiation knot size and function. This sheds light on the mechanisms how ectodysplasin deficiency causes tooth agenesis in humans, summarizes Irma Thesleff.

Laura Ahtiainen, the first author of the article, continues to explore the cellular mechanisms of tooth morphogenesis in her recently established lab at the Institute of Biotechnology, University of Helsinki.
-end-


University of Helsinki

Related Cell Biology Articles:

Biochemists develop new way to control cell biology with light
Researchers at the University of Alberta have developed a new method of controlling biology at the cellular level using light.
Molecular biology: Fingerprinting cell identities
Every cell has its own individual molecular fingerprint, which is informative for its functions and regulatory states.
Cell biology: Take the mRNA train
Messenger RNAs bearing the genetic information for the synthesis of proteins are delivered to defined sites in the cell cytoplasm by molecular motors.
Designer switches of cell fate could streamline stem cell biology
Researchers at the University of Wisconsin-Madison have developed a novel strategy to reprogram cells from one type to another in a more efficient and less biased manner than previous methods.
Live cell imaging of asymmetric cell division in fertilized plant cells
Plant biologists have succeeded for the first time in visualizing how egg cells in plants divides unequally (asymmetric cell division) after being fertilized.
Vortex rings may aid cell delivery, cell-free protein production
Cornell researchers have devised a method for producing toroid-shaped particles through a process called vortex ring freezing.
Original cell type does not affect iPS cell differentiation to blood
The effectiveness of reprogramming cells into blood cells is thought to depend on the original cell type and reprogramming method.
Misleading images in cell biology
Virtually all membrane proteins have been reported to be organized as clusters on cell surfaces, when in fact many of them are just single proteins which have been counted multiple times.
Roadmap for advanced cell manufacturing shows path to cell-based therapeutics
An industry-driven consortium has developed a national roadmap designed to chart the path to large-scale manufacturing of cell-based therapeutics for use in a broad range of illnesses including cancer, neuro-degenerative diseases, blood and vision disorders and organ regeneration and repair.
Copernicus Award 2016 for German-Polish Collaboration in Molecular Cell Biology
Researchers from Göttingen and Warsaw receive award from the DFG and the Foundation for Polish Science (FNP) / Award ceremony to take place on June 7, 2016 in Warsaw.

Related Cell Biology Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".