Nav: Home

Pharmaceuticals retain potential to cause damage in aquatic environments

October 10, 2016

More sophisticated methods may be required to assess the accumulation and wider impact of human and veterinary pharmaceuticals within the aquatic environment, scientists have said.

It comes after research led by the University of Plymouth showed that commonly used medications were not absorbed by riverine bacteria as might have been expected based on models and previous tests.

It means that many medicines of similar type, excreted into surface waters directly or via treated and untreated wastewaters and biosolids, may remain intact for a considerable time, maintaining the potential for them to cause negative impacts on aquatic organisms.

The study, funded by the Natural Environment Research Council and published in Environmental Chemistry Letters, was led by Dr Mark Fitzsimons and Dr Alan Tappin, of Plymouth's Biogeochemistry Research Centre, in conjunction with the Institute of Integrative Biology at the University of Liverpool.

Dr Fitzsimons, the corresponding author on the study, said: "The contamination of surface waters by pharmaceuticals is now widespread, but there are few data on their environmental behaviour. However, recent research has suggested that the behaviour of freshwater fish can be altered by current measured levels of pharmaceuticals. This study shows that improved predictive power, with respect to modelling bioaccumulation, may be needed to robustly assess the environmental risks of pharmaceuticals in aquatic environments."

The study investigated the persistence of four widely-used, cationic pharmaceuticals included in the World Health Organisation List of Essential Medicines. They included the anti-malarial drugs chloroquine and quinine, the anti-psychosis drug fluphenazine and an anti-worming agent, levamisole.

Over the course of 21 days, riverine bacteria contained with water collected from the River Tamar were exposed to each of the four pharmaceuticals, with the concentrations measured at the beginning and end of each period. Levamisole was the only pharmaceutical to be taken up by bacteria (with up to 19 % removal), while the concentrations of quinine, chloroquine and fluphenazine were unaffected.

Previous research at the University of Plymouth has suggested the natural photo degradation of diazepam and similar medicines - followed by bacterial breakdown - may reduce their potentially harmful impact on the UK's freshwater environment.

Dr Tappin added: "Although studies of pharmaceuticals in surface waters of high income countries is now in its fourth decade, there remains little systematic understanding of pharmaceutical transport, fate and impact. This is all the more concerning for lower income countries, where pharmaceutical use is forecast to increase significantly in the foreseeable future, with attendant increased losses of pharmaceuticals to the environment, and losses in many cases fuelled by the aspiration for the increased use of waste water for the irrigation of agricultural and horticultural crops. This will only enhance the widespread diffuse contamination of aquatic systems by pharmaceuticals, with potential unforeseen consequences."
-end-


University of Plymouth

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".