Nav: Home

Pharmaceuticals retain potential to cause damage in aquatic environments

October 10, 2016

More sophisticated methods may be required to assess the accumulation and wider impact of human and veterinary pharmaceuticals within the aquatic environment, scientists have said.

It comes after research led by the University of Plymouth showed that commonly used medications were not absorbed by riverine bacteria as might have been expected based on models and previous tests.

It means that many medicines of similar type, excreted into surface waters directly or via treated and untreated wastewaters and biosolids, may remain intact for a considerable time, maintaining the potential for them to cause negative impacts on aquatic organisms.

The study, funded by the Natural Environment Research Council and published in Environmental Chemistry Letters, was led by Dr Mark Fitzsimons and Dr Alan Tappin, of Plymouth's Biogeochemistry Research Centre, in conjunction with the Institute of Integrative Biology at the University of Liverpool.

Dr Fitzsimons, the corresponding author on the study, said: "The contamination of surface waters by pharmaceuticals is now widespread, but there are few data on their environmental behaviour. However, recent research has suggested that the behaviour of freshwater fish can be altered by current measured levels of pharmaceuticals. This study shows that improved predictive power, with respect to modelling bioaccumulation, may be needed to robustly assess the environmental risks of pharmaceuticals in aquatic environments."

The study investigated the persistence of four widely-used, cationic pharmaceuticals included in the World Health Organisation List of Essential Medicines. They included the anti-malarial drugs chloroquine and quinine, the anti-psychosis drug fluphenazine and an anti-worming agent, levamisole.

Over the course of 21 days, riverine bacteria contained with water collected from the River Tamar were exposed to each of the four pharmaceuticals, with the concentrations measured at the beginning and end of each period. Levamisole was the only pharmaceutical to be taken up by bacteria (with up to 19 % removal), while the concentrations of quinine, chloroquine and fluphenazine were unaffected.

Previous research at the University of Plymouth has suggested the natural photo degradation of diazepam and similar medicines - followed by bacterial breakdown - may reduce their potentially harmful impact on the UK's freshwater environment.

Dr Tappin added: "Although studies of pharmaceuticals in surface waters of high income countries is now in its fourth decade, there remains little systematic understanding of pharmaceutical transport, fate and impact. This is all the more concerning for lower income countries, where pharmaceutical use is forecast to increase significantly in the foreseeable future, with attendant increased losses of pharmaceuticals to the environment, and losses in many cases fuelled by the aspiration for the increased use of waste water for the irrigation of agricultural and horticultural crops. This will only enhance the widespread diffuse contamination of aquatic systems by pharmaceuticals, with potential unforeseen consequences."
-end-


University of Plymouth

Related Bacteria Articles:

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
More Bacteria News and Bacteria Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.