Spin-current generation gets mid-IR boost with plasmonic metamaterial

October 10, 2017

WASHINGTON, D.C., Oct. 10, 2017 -- Over the last few years, researchers have demonstrated that light can serve as a spin-current generator, creating currents of angular momentum, in optical nanostructures known as plasmonic absorbers, opening up a new branch of spintronics called opto-spintronics.

Recently, researchers have begun to use metamaterials, engineered composites that have unique properties not found in nature, to enhance the absorption rates of plasmonic absorbers. These properties include the size, shape and arrangement of the nanoparticles that manipulate electromagnetic waves, absorbed as light, to achieve what is impossible with conventional materials.

Researchers in Japan used a trilayered metamaterial to develop a wavelength-selective plasmonic metamaterial absorber (PMA) on top of a spintronic device to enhance the generation of spin currents from the heat produced in the mid-infrared regime.

The research, which could be incorporated in a range of applications from thermophotovoltaics and ultrathin film solar cells to light and thermal detectors, is reported this week in APL Photonics, from AIP Publishing.

"Our work is the first to combine mid-infrared plasmonic metamaterials with spintronic devices. This unique combination enables stronger light absorption and shows the excellent tenability of these metamaterials' resonance wavelengths," said Satoshi Ishii, a researcher at the National Institute for Materials Science and co-author of the paper.

The researchers created a spintronic device made up of separate layers of platinum (Pt) and yttrium iron garnet (YIG). They then placed layers of alumina and aluminum on the Pt layer to create the PMA on top of the spintronic device. In this case, Pt is used as the bottommost layer in the PMA and also as the top layer of the spintronic device.

The team in Japan showed that a spin current can be generated directly from the absorbed photons in the Pt film, a paramagnetic metal, that is placed over YIG, which is a magnetic insulator. Because light is confined in the subwavelength regime in the PMA, electromagnetic fields are strongly enhanced before the light is absorbed. After light is absorbed by the Pt film, it generates heat, which is also enhanced by the PMA.

In other words, when incident light hits the device in the mid-infrared range, the PMA exhibits a strong plasmonic resonance, which maximizes the absorption. A fraction of the absorbed light partially triggers the photo-spin-voltaic (PSV) effect in the Pt/YIG spintronic device, a relatively new method for directly generating spin currents via photons in a nonmagnetic metal layered with a magnetic insulator. The remaining light heats up the device to produce a thermal gradient across the magnetic material thickness, which in turn induces a thermally generated spin voltage in what is called the longitudinal spin Seebeck effect (LSSE).

"In short, owing to the plasmonic metamaterial absorber," said Ken-ichi Uchida, another NIMS researcher and co-author of the paper, "the device allows the electrical detection of a specific wavelength through the PSV effect and the LSSE."
-end-
The article, "Wavelength-selective spin-current generator using infrared plasmonic metamaterials," is authored by Satoshi Ishii, Ken-ichi Uchida, Thang Duy Dao, Yoshiki Wada, Eiji Saitoh and Tadaaki Nagao. The article will appear in the journal APL Photonics Oct. 10, 2017 (DOI: 10.1063/1.4991438). After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4991438.

ABOUT THE JOURNAL

APL Photonics is the dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science. See http://scitation.aip.org/content/aip/journal/app.

American Institute of Physics

Related Metamaterials Articles from Brightsurf:

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Origami metamaterials show reversible auxeticity combined with deformation recoverability
New research by Northwestern Engineering and Georgia Institute of Technology expands the understanding of origami structures, opening possibilities for mechanical metamaterials to be used in soft robotics and medical devices.

Temporal aiming with temporal metamaterials
Achieving a controllable manipulation of electromagnetic waves is important in many applications.

VR and AR devices at 1/100 the cost and 1/10,000 the thickness in the works
Professor Junsuk Rho of the departments of mechanical engineering and chemical engineering and doctoral student in mechanical engineering Gwanho Yoon at POSTECH with the research team at Korea University have jointly developed moldable nanomaterials and a printing technology using metamaterials, allowing the commercialization of inexpensive and thin VR and AR devices.

Virtualized metamaterials opens door for acoustics application and beyond
Scientists from the Hong Kong University of Science and Technology (HKUST) have realized what they called a virtualized acoustic metamaterial, in digitizing material response to an impulse response stored in a software program.

In acoustic waves, engineers break reciprocity with 'spacetime-varying metamaterials'
Working in an emerging field known to as 'spacetime-varying metamaterials,' University at Buffalo engineers have demonstrated the ability to break reciprocity in acoustic waves.

Induced flaws in metamaterials can produce useful textures and behavior
A new Tel Aviv University study shows how induced defects in metamaterials -- artificial materials the properties of which are different from those in nature -- also produce radically different consistencies and behaviors.

Researchers use metamaterials to create two-part optical security features
Researchers have developed advanced optical security features that use a two-piece metamaterial system to create a difficult-to-replicate optical phenomenon.

Artificial intelligence (AI) designs metamaterials used in the invisibility cloak
The research group of Prof. Junsuk Rho, Sunae So and Jungho Mun of Department of Mechanical Engineering and Department of Chemical Engineering at POSTECH developed a design with a higher degree of freedom which allows to choose materials and to design photonic structures arbitrarily by using Deep Learning.

Scientists take a 'metamaterials' approach to earthquake damage
At the SSA 2019 Annual Meeting, seismologists from around the world will discuss how metamaterial theory might be applied to everything from developing deflective barriers to manipulating the layout of buildings within a city as a way to minimize the impact of damaging surface seismic waves.

Read More: Metamaterials News and Metamaterials Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.