Nav: Home

New mutations in iPS cells are mainly concentrated in non-transcriptional regions

October 10, 2017

Induced pluripotent stem cells--stem cell-like cells that have been reprogrammed from normal body cells--are a promising avenue of regenerative medicine, and are currently being tested in several clinical studies. However, there are concerns that the mutations that arise in these cells during their generation could potentially cause problems in transplant patients, in particular malignancies. Consequently, researchers are keen to understand the nature of the mutations that arise in these cells.

Now, in research published in Cell Reports, a team from the RIKEN Preventive Medicine and Diagnosis Innovation Program and other institutes has some potentially comforting news. By performing genomic analysis on both mouse and human iPS cells, they found that unlike disease-causing single nucleotide polymorphisms, the mutations found in iPS cells tend to be concentrated into non-transcribed areas of the genome between genes. They also showed that the new mutations that arise in iPS cells are likely caused by oxidative stress, and that this seems to explain why they are concentrated in certain regions.

The specific areas where the new mutations tend to be found--called "lamina-associated domains"--are located on the outer edge of the cell's nucleus, in the membrane that separates the nucleus from the cytoplasm. These areas are characterized by condensed chromatin, and are sensitive to the oxidative damage released from mitochondria. It is known that mutations tend to occur differently in different parts of the genome, depending on a number of factors including the source of the damage, the accessibility of DNA repair mechanisms and the "chromatin status," which refers to how tightly the DNA is wrapped.

According to Yasuhiro Murakawa of the RIKEN Preventive Medicine and Diagnosis Innovation Program and the RIKEN Center for Life Science Technologies (CLST), who led the group, "In this study we found that though there are many mutations that arise during reprogramming, many of them are in transcriptionally repressed lamina-associated domains, and it is tempting to speculate that this means that they will not lead to adverse effects." The researchers also noted that most of the non-synonymous--meaning that the mutation leads to an actual change in a protein--mutations were not those found in a catalog of cancer-related mutations, so were essentially new mutations that still need to be investigated.

Murakawa says, "This study has given us insights into the broad mutational landscape of iPS cells, and it will give us a framework for looking at variations in iPS genomes. This will help us in the quest to develop new therapies."
-end-
This work was done in collaboration with CLST, the National Institutes for Quantum and Radiological Science and Technology, and Osaka University.

RIKEN

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

DNA: The Story of the Genetic Revolution
by James D. Watson (Author), Andrew Berry (Author), Kevin Davies (Author)

The Family Tree Guide to DNA Testing and Genetic Genealogy
by Blaine T. Bettinger (Author)

Who We Are and How We Got Here: Ancient DNA and the New Science of the Human Past
by David Reich (Author)

The Four: The Hidden DNA of Amazon, Apple, Facebook, and Google
by Scott Galloway (Author)

The Innovator's DNA: Mastering the Five Skills of Disruptive Innovators
by Jeff Dyer (Author), Hal Gregersen (Author), Clayton M. Christensen (Author)

Cosmic Serpent: DNA and the Origins of Knowledge
by Jeremy Narby (Author)

DNA Science: A First Course, Second Edition
by David Micklos (Author), Greg A. Freyer (Author)

Genetics For Dummies
by Tara Rodden Robinson (Author)

The Lost King of France: How DNA Solved the Mystery of the Murdered Son of Louis XVI and Marie Antoinette
by Deborah Cadbury (Author)

Move Your DNA: Restore Your Health Through Natural Movement Expanded Edition
by Katy Bowman (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Why We Hate
From bullying to hate crimes, cruelty is all around us. So what makes us hate? And is it learned or innate? This hour, TED speakers explore the causes and consequences of hate — and how we can fight it. Guests include reformed white nationalist Christian Picciolini, CNN commentator Sally Kohn, podcast host Dylan Marron, and writer Anand Giridharadas.
Now Playing: Science for the People

#482 Body Builders
This week we explore how science and technology can help us walk when we've lost our legs, see when we've gone blind, explore unfriendly environments, and maybe even make our bodies better, stronger, and faster than ever before. We speak to Adam Piore, author of the book "The Body Builders: Inside the Science of the Engineered Human", about the increasingly amazing ways bioengineering is being used to reverse engineer, rebuild, and augment human beings. And we speak with Ken Thomas, spacesuit engineer and author of the book "The Journey to Moonwalking: The People That Enabled Footprints on the Moon" about...