Nav: Home

Better mini brains could help scientists identify treatments for Zika-related brain damage

October 10, 2017

UCLA researchers have developed an improved technique for creating simplified human brain tissue from stem cells. Because these so-called "mini brain organoids" mimic human brains in how they grow and develop, they're vital to studying complex neurological diseases.

In a study published in the journal Cell Reports, the researchers used the organoids to better understand how Zika infects and damages fetal brain tissue, which enabled them to identify drugs that could prevent the virus's damaging effects.

The research, led by senior author Ben Novitch, could lead to new ways to study human neurological and neurodevelopmental disorders, such as epilepsy, autism and schizophrenia.

"Diseases that affect the brain and nervous system are among the most debilitating medical conditions," said Novitch, UCLA's Ethel Scheibel Professor of Neurobiology and a member of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA. "Mini brain organoids provide us with opportunities to examine features of the human brain that are not present in other models, and we anticipate that their similarity to the real human brain will enable us to test how various drugs impact abnormal or diseased brain tissue in far greater detail."

For about five years, scientists have been using human pluripotent stem cells, which can create any cell type in the body, to develop mini brain organoids. But the organoids they produced have generally been difficult to use for research because they had highly variable structures and inconsistent cellular composition, and because they didn't correctly mimic the layered structure of the brain and were too small -- often no bigger than the head of a pin. They also didn't survive very long in the laboratory and contained neural tissue that was difficult to classify in relation to real human brain tissue.

The organoids developed by Novitch's group have a stratified structure that accurately mimics the human brain's onion-like layers, they survive longer and have a larger and more uniform shape.

To create the brain organoids, Novitch and his team made several modifications to the methods that other scientists used previously: The UCLA investigators used a specific number of stem cells and specialized petri dishes with a modified chemical environment; previous methods used varying amounts of cells and a different type of dish. And they added a growth factor called LIF, which stimulated a cell-signaling pathway that is critical for human brain growth.

The researchers found critical similarities between the organoids they developed and real human brain tissue. Among them: The organoids' anatomy closely resembled that of the human cortex, the region of the brain associated with thought, speech and decision making; and a diverse array of neural cell types commonly found in the cortex were all present in the organoids, and they exhibited electrical activities and network function, meaning they were capable of communicating with one another much like the neural networks in the human brain do.

UCLA Broad Stem Cell Research Center/
Cell Reports

Organoids before (left) and after exposure to Zika (center), and after treatment (right).

The UCLA scientists also found that they could modify their methodology to make other parts of the brain including the basal ganglia, which are involved in the control of movement and are affected by neurodegenerative conditions such as Parkinson's disease and Huntington's disease.

"While our organoids are in no way close to being fully functional human brains, they mimic the human brain structure much more consistently than other models," said Momoko Watanabe, a UCLA postdoctoral fellow and the study's first author. "Other scientists can use our methods to improve brain research because the data will be more accurate and consistent from experiment to experiment and more comparable to the real human brain."

When the team exposed the organoids to Zika, they discovered specifically how the virus destroys neural stem cells, the cells from which the brain grows during fetal development. Novitch's team found that there are four specific molecules, called receptors, on the outer surface of neural stem cells; previous studies have indicated that the Zika virus could bind to these receptors and infect the cells. The researchers then mapped the changes that occur in the neural stem cells after Zika infection, presenting a clearer picture of how the virus infiltrates and harms fetal brain tissue.

Zika is associated with an unusually high incidence of fetal brain damage, so understanding how neural stem cells are affected by the virus could be an important new step toward a treatment.

The researchers tested several drugs on the Zika-infected organoids. They found three that are effective at blocking the virus's entry into the brain tissue, including two that protected neural stem cells by preventing the interaction between the virus and entry receptors on the neural stem cells. In previous studies by Novitch and other UCLA colleagues, one of those drugs reduced brain damage in fetal mice infected with Zika.

"Many neurological diseases or conditions arise from defects in the way one neuron communicates with another or from the way an external factor, such as a virus, interacts with neural cells," Novitch said. "If we can focus in at the level of cellular communication, we should be able to model those undesirable cellular interactions and counteract them with drugs or other therapies."

The team plans to continue using its improved organoids to better understand human brain development and to learn more about autism spectrum disorders, epilepsy and other neurological conditions.

The experimental drugs used in the preclinical study have not been tested in humans or approved by the Food and Drug Administration for treating Zika in humans.
-end-
The research was supported by grants from the California Institute for Regenerative Medicine and its California State University Northridge-UCLA Bridges training program; the National Institutes of Health; the Uehara Memorial Foundation; the Ministry of Science, Research and Arts of Baden-Württemberg; the National Institute of Neurological Disorders and Stroke's Informatics Center for Neurogenetics and Neurogenomics; an UCLA Broad Stem Cell Research Center-Binder Family Foundation research award; and an UCLA Broad Stem Cell Research Center-Rose Hills Foundation research award.

University of California - Los Angeles Health Sciences

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Stem Cell Therapy: A Rising Tide: How Stem Cells Are Disrupting Medicine and Transforming Lives
by Neil H Riordan (Author)

Stem cells are the repair cells of your body.  When there aren’t enough of them, or they aren’t working properly, chronic diseases can manifest and persist. From industry leaders, sport stars, and Hollywood icons to thousands of everyday, ordinary people, stem cell therapy has helped when standard medicine failed. Many of them had lost hope. These are their stories.

Neil H Riordan, author of MSC: Clinical Evidence Leading Medicine’s Next Frontier, the definitive textbook on clinical stem cell therapy, brings you an easy-to-read book about how and why stem cells work,... View Details


Stem Cells: An Insider's Guide
by Paul Knoepfler (Author)

Stem Cells: An Insider's Guide is an exciting new book that takes readers inside the world of stem cells guided by international stem cell expert, Dr. Paul Knoepfler. Stem cells are catalyzing a revolution in medicine. The book also tackles the exciting and hotly debated area of stem cell treatments that are capturing the public's imagination. In the future they may also transform how we age and reproduce. However, there are serious risks and ethical challenges, too. The author's goal with this insider's guide is to give readers the information needed to distinguish between the... View Details


The Stem Cell Revolution
by Mark Berman MD (Author), Elliot Lander MD (Contributor)

The book describes the journey into the growing arena of clinical stem cell therapy by highlighting not only the road that brought a team of physicians together but also real stories from a number of their patients that were given their health back through the magic of stem cell therapy. Your fat is loaded with stem cells that can be used now to treat and reverse a large number of inflammatory and degenerative conditions. Most people have no idea that these magical cells actually exist right within our bodies. They think that they must wait until Big Pharma or a university PhD manufactures... View Details


Stem Cells Are Everywhere
by Irv Weissman MD (Author)

An engaging introduction to stem cells for young scientists
 
How do you heal when you cut your skin or break a bone? How does your body keep making new blood or brain cells, or even second teeth? How does a plant keep growing larger? The answers lie in stem cells, which are found in every growing plant and animal. Keeping the subject simple enough for young readers, a pioneer of stem cell research explains cells, tissues, normal growth, what can go wrong, and how to fix it. View Details


Stem Cells For Dummies
by Lawrence S.B. Goldstein (Author), Meg Schneider (Author)

The first authoritative yet accessible guide to this controversial topic

Stem Cell Research For Dummies offers a balanced, plain-English look at this politically charged topic, cutting away the hype and presenting the facts clearly for you, free from debate. It explains what stem cells are and what they do, the legalities of harvesting them and using them in research, the latest research findings from the U.S. and abroad, and the prospects for medical stem cell therapies in the short and long term.

Explains the differences between adult stem cells and embryonic/umbilical... View Details


Stem Cells: A Very Short Introduction
by Jonathan Slack (Author)

Embryonic stem cells have been hot-button topics in recent years, generating intense public interest as well as much confusion and misinformation. In this Very Short Introduction, leading authority Jonathan Slack offers a clear and informative overview of stem cells--what they are, what scientists do with them, what stem cell therapies are available today, and how they might be used in the future. Slack explains the difference between embryonic stem cells, which exist only in laboratory cultures, and tissue-specific stem cells, which exist in our bodies, and he discusses how... View Details


Stem Cells: A Short Course
by Rob Burgess (Author)

Stem Cells: A Short Course is a comprehensive text for students delving into the rapidly evolving discipline of stem cell research. Comprised of eight chapters, the text addresses all of the major facets and disciplines related to stem cell biology and research. A brief history of stem cell research serves as an introduction, followed by coverage of stem cell fundamentals; chapters then explore embryonic and fetal amniotic stem cells, adult stem cells, nuclear reprogramming, and cancer stem cells. The book concludes with chapters on stem cell applications, including the role of stem... View Details


The Stem Cell Hope: How Stem Cell Medicine Can Change Our Lives
by Alice Park (Author)

A landmark book by the senior science writer at Time magazine introduces us to a medical breakthrough that can save our lives. 

Few people know much about stem cell research beyond the ethical questions raised by using embryos. But in the last decade, stem cell research has made huge advances toward eliminating some of our most intractable diseases. Now this sweeping and accessible book introduces us to this cutting-edge science that will revolutionize medicine and change the way we think about and treat disease. 

Alice Park takes us from stem cell's... View Details


Essentials of Stem Cell Biology, Third Edition
by Robert Lanza (Editor), Anthony Atala (Editor)

First developed as an accessible abridgement of the successful Handbook of Stem Cells, Essentials of Stem Cell Biology serves the needs of the evolving population of scientists, researchers, practitioners, and students embracing the latest advances in stem cells. Representing the combined effort of 7 editors and more than 200 scholars and scientists whose pioneering work has defined our understanding of stem cells, this book combines the prerequisites for a general understanding of adult and embryonic stem cells with a presentation by the world's experts of the latest... View Details


Stem Cells: Promise and Reality
by Lygia V Pereira (Author)

Stem Cells: Promises and Reality will tell you everything you have always wanted to know about stem cells, but could not understand the field from elsewhere. Stem cells are the great therapeutic promise of the century, and this evolving field of research and medicine brings with it many legal, ethical and psychological issues that must be discussed by society as a whole. Written so as to be accessible to general readers as well as specialists, this book explains what stem cells are, and the different aspects of stem cell research and applications. The book will enable the reader to understand... View Details

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Manipulation
We think we're the ones who control what we see, read, think and remember. But is that true? Who decides? And who should decide? This hour, TED speakers reveal just how easily we can be manipulated. Guests include design ethicist Tristan Harris, MSNBC host Ali Velshi, psychologist Elizabeth Loftus, and neuroscientist Steve Ramirez.
Now Playing: Science for the People

#443 Batteries
This week on Science for the People we take a deep dive into modern batteries: how they work now and how they might work in the future. We speak with Gerbrand Ceder from UC Berkeley, about the most commonly used batteries today, how they work, and how they could work better. And we talk with Kathryn Toghill, electrochemist from Lancaster University, about redox flow batteries and how they could help make our power grids more sustainable.