Wired for life: Study links infants' brain circuitry to future health

October 10, 2018

LOS ANGELES -- Growth rates of brain circuits in infancy may help experts predict what a child's intelligence and emotional health could be when the child turns 4, a new study has found. Along with prior research, these findings could help future physicians identify cognitive and behavioral challenges in the first months and years of life, leading to early treatment.

About 15 percent of children in the U.S. between age 2 and 8 are diagnosed with at least one mental, behavioral or developmental disorder, according to the U.S. Centers for Disease Control and Prevention. These disorders include learning difficulties, delays in language acquisition, attention deficit disorder, autism and other problems.

The new study, published in Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, adds to the understanding of how infant brain development can provide important early clues to these disorders. The study was conducted by investigators at Cedars-Sinai in Los Angeles and the University of North Carolina at Chapel Hill.

The team built on earlier research in which they performed MRI scans on more than 1,000 healthy infants to examine how and when connections developed between the brain's emotional regulator, called the amygdala, and the rest of the brain. They found that while newborns lack the connectivity of adult brains, rapid development of the circuits occurred in the first year of life, followed by strengthening and fine-tuning at age 2.

For their latest study, the team evaluated 223 of the children who participated in the earlier study. The investigators studied the children at 4 years old to see whether their brain scans as infants had predicted later behavior. In addition to IQ tests specially designed for 4-year-olds to measure cognitive development, the researchers surveyed the children's parents and used standardized tests such as the Behavior Assessment System for Children and the Behavior Rating Inventory of Executive Function to measure levels of anxiety, self-control skills and other behaviors.

"Our results confirmed that emotional circuit development during infancy affects children as they grow up," said Wei Gao, PhD, associate professor of Biomedical Sciences and director of Neuroimaging Research at the Cedars-Sinai Biomedical Imaging Research Institute. "Using the functional connectivity of infants' brains to predict emotional and cognitive outcomes could become a powerful tool to identify problems early on and design effective treatment plans."

Gao was co-senior author of the study, along with John Gilmore, MD, from the University of North Carolina at Chapel Hill. Project scientist Andrew Salzwedel, PhD, from Gao's laboratory was the first author.

Charles Simmons, MD, professor and chair of the Department of Pediatrics at Cedars-Sinai, said the findings address an important health issue. "New predictive biomarkers of neurological development are needed because a significant number of children are at risk of adverse neurological development due to genetic, environmental and lifestyle factors," he explained. "These studies provide hope that in the near future we may be able to more accurately diagnose, intervene and optimize neonatal and infant development."

Gao said the team's next goal is to establish more comprehensive, imaging-based models to predict a wider variety of developmental outcomes during and beyond early childhood. The team also plans to apply its model to at-risk populations, including babies with premature birth and prenatal drug exposure.
-end-
This study received funding from Cedars-Sinai Precision Health, which seeks to drive the development of the newest technology and best research, coupled with the finest clinical practice, to rapidly enable a new era of personalized health; and from the National Institutes of Health under award numbers R01DA042988, R01DA043678, R21NS088975, R21DA043171, R03DA036645, T32-MH106440, U01MH110274, R01MH064065 and R01HD05300.

Cedars-Sinai Medical Center

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.