Nav: Home

UCI researchers discover molecular mechanisms of ancient herbal remedies

October 10, 2018

Irvine, CA - October 10, 2018 - Researchers in the Department of Physiology & Biophysics at the University of California, Irvine School of Medicine have discovered the molecular basis for a therapeutic action of an ancient herbal medicine used across Africa to treat various illnesses, including epilepsy.

The herbal medicine, a leaf extract from the shrub Mallotus oppositifolius, was previously found to be effective in controlling seizures but the mechanism was unknown. The discovery, published in Nature Communications, found that two components of the Mallotus leaf extract activate KCNQ2/3, a potassium ion channel essential for controlling electrical activity in the brain. The two components were somewhat effective alone, but in combination were highly effective both at activating KCNQ2/3 channels and at preventing life-threatening seizures.

The UCI research team, comprising postdoctoral fellow Rían Manville, PhD and principal investigator Geoffrey Abbott, MSc, PhD, screened individual compounds from the leaf extract for channel opening activity, and then combined the two most active compounds to discover the therapeutic synergy contained in an African folk remedy used for centuries. Strikingly, one of the two compounds identified, isovaleric acid, is also a main component of valerian root, an herb used in ancient Greece as an insomnia sleep remedy, and for centuries by the English and also native Americans as an anticonvulsant. Valerian root is still used by as many as 2 million people each week in the United States as an herbal remedy for anxiety and insomnia.

"We are very interested in taking a molecular approach to ethnobotany - the study of plants and their use by local populations - to discover the molecular mechanisms for ancient remedies and to use this knowledge to create safer and more effective drugs. The KCNQ channels we study are typically opened by electrical activity, but we know that they are also incredibly sensitive to the presence of small molecules, including neurotransmitters, but also molecules from outside, such as drugs, and constituents of food and herbal extracts," said Abbott. "Some folk medicines are in danger of being lost, either because traditional practices are being forgotten, or because the plant species used are endangered. Species loss can arise from over-collecting, habitat destruction, or climate change. There is a race against time to prevent this incredible resource being lost forever."

The UCI team found that the herbal extract they studied had different channel subtype preferences than modern drugs that activate the KCNQ2/3 channel, such as the anticonvulsant drug, retigabine. Because of this, by combining the herbal compounds with retigabine, they were able to completely lock open the channel, a feat not previously achieved.

"Locking open the channel is a neat trick, but it could also have clinical implications. Retigabine was removed from the market last year because of a surprising side effect: it turns the skin and whites of the eyes blue. However, by combining retigabine with the herbal components, we found we could greatly reduce the retigabine dosage required for activity. This type of strategy might one day enable us to use drugs like retigabine at dosages low enough to be safe, whilst retaining or even enhancing their efficacy by combining them with natural booster compounds derived from plants," said Abbott.

In addition to the booster effects of the herbal extract, identification of the ability of specific chemicals within plants to activate influential ion channels such as KCNQ2/3 may lead one day to new epilepsy, anxiety and pain drugs that exploit the alternative chemical spaces offered by the molecular constituents of ethnobotanicals.
-end-
This study was supported by the US National Institutes of Health (GM115189).

About the UCI School of Medicine

Each year, the UCI School of Medicine educates more than 400 medical students, as well as 200 doctoral and master's students. More than 600 residents and fellows are trained at UC Irvine Medical Center and affiliated institutions. The UCI School of Medicine offers an MD degree, a dual MD/PhD medical scientist training program, PhDs and master's degrees in anatomy and neurobiology, biomedical sciences, genetic counseling, epidemiology, environmental health sciences, pathology, pharmacology, physiology and biophysics, and translational sciences. Medical students also may pursue an MD/MBA program, a combined MD/Master's in Public Health or a dual MD/master's program called the Program in Medical Education for the Latino Community (PRIME-LC). UCI School of Medicine is accredited by Liaison Committee on Medical Accreditation (LCME), and ranks among the top 50 nationwide for research. For more information, visit: som.uci.edu.



About the University of California, Irvine


Founded in 1965, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 30,000 students and offers 192 degree programs. Located in one of the world's safest and most economically vibrant communities, UCI is Orange County's second-largest employer, contributing $5 billion annually to the local economy. For more on UCI, visit http://www.uci.edu.

University of California - Irvine

Related Drugs Articles:

Using drugs for different diseases than initially intended for
Thousands of drugs have the potential to be effective against other diseases than they were developed for.
Virtual development of real drugs
systemsDock is a new, free on-line resource that makes screening for drugs faster and more accurate.
Migraine drugs underused
New research shows that more migraines could be safely treated with drugs that are known to constrict blood vessels.
Why cancer drugs can't take the pressure
A major reason why cancer drugs fail is that they cannot penetrate the high-pressure environment of solid tumors.
Designing better drugs
A new strategy for engineering protein fusions -- to make specific cell-targeted drugs without side effects -- could enable a safer, more potent class of protein drugs.
Why synthetic drugs are as scary as you think (video)
Synthetic drugs such as 'bath salts,' 'K2' or 'Spice' have made unsettling headlines lately, with reports of violent, erratic behavior and deaths after people have used the substances.
Using old drugs to treat new viruses
A group of drugs already in everyday use to treat psychosis or depression may also be used to defeat deadly and emerging viruses, according to new research led by the University of Leeds.
'Metal' drugs to fight cancer
What is the mechanism of action of metal-based chemotherapy drugs (the most widely used for treating common cancers like testicular or ovarian cancer)?
Using superlatives in the media for cancer drugs
The use of superlatives to describe cancer drugs in news articles as 'breakthrough,' 'revolutionary,' 'miracle' or in other grandiose terms was common even when drugs were not yet approved, had no clinical data or not yet shown overall survival benefits, according to an article published online by JAMA Oncology.
Seeking a better way to design drugs
With a three-year, $346,000 award from the National Institutes of Health, a research team at Worcester Polytechnic Institute.

Related Drugs Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".