Nav: Home

How to make fish shine

October 10, 2018

Scientists from the University of Bath have helped to figure out why shoals of fish flash silver as they twist through the water by studying how the shiny silver cells are created in zebrafish.

In mammals, including humans, there is only one pigment cell-type; the melanocyte. These cells are usually black or brown, are responsible for colouring both skin and hair, and underlie the skin cancer melanoma.

However fish form multiple pigment cell-types, not just the melanocytes. In zebrafish, in addition to black melanocytes, the body is coloured by yellow xanthophores, and by shiny, silver cells called iridophores.

The question of how different cells arise is a major question in stem cell and developmental biology, and this work from the laboratory of Prof. Robert Kelsh in the Department of Biology & Biochemistry sheds light on this question.

Prof. Kelsh's group study the zebrafish, a small tropical fish, principally because they are easy to work with, are accessible for genetic manipulation, and have beautifully transparent embryos. This allows scientists to study cells of interest easily.

The different types of pigment cells derive from a type of stem cell called a neural crest cell, that also makes diverse types of neurons and skeletal cells, amongst others.

In this latest paper the lead author, Dr Kleio Petratou, and her colleagues used an unusual combination of genetic techniques and mathematical modelling to identify how a series of key genes interact and drive a neural crest cell to become a silver iridophore.

The key genes were identified by genetic manipulation, demonstrating that when their function is lost, iridophores cannot be formed. But that didn't explain how these genes worked together, a process made more difficult by the fact that neural crest cells migrate through the body extensively during the process of their development.

By using painstaking assessment of genetically-altered zebrafish and a rigorous focus on interpretation of the state of cells as they migrate, they were able to dissect the functional relationships between these genes, identifying what is known as a gene regulatory network (a kind of genetic wiring diagram) underpinning how a neural crest cell decides to become an iridophore.

Prof. Kelsh's team used one other technique, mathematical modelling, to refine that network. Working with colleagues from the University of Surrey, they developed a series of simple mathematical models depicting alternative ways in which the network might be organised, and used computer simulations of their behaviour to identify a strongly favoured variant.

Dr Petratou said: "The combination of the sorts of detailed developmental genetics that the zebrafish allows, with rigorous mathematical modelling, really helped us discover the genes at the core of iridophore formation and to identify the structure of their interaction, in a way that simple genetics alone would not have allowed."

Professor Kelsh added: "We are now in an excellent position to integrate this data with similar interdisciplinary studies on melanocytes, in order to understand how stem cell fate choice really works."

This approach has widespread application throughout stem cell biology, as well as showing how fish can shine.

The study is published in PLOS Genetics.
-end-
The study was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and by University of Bath studentship to Dr Petratou.

Animal research at Bath

The University of Bath has signed the Concordat on Openness on Animal Research. The University is committed to enhancing our communications with the media and public about our research using animals. Find out more: http://www.bath.ac.uk/collections/animal-research/

University of Bath

The University of Bath is one of the UK's leading universities both in terms of research and our reputation for excellence in teaching, learning and graduate prospects.

The University is rated Gold in the Teaching Excellence Framework (TEF), the Government's assessment of teaching quality in universities, meaning its teaching is of the highest quality in the UK.

In the Research Excellence Framework (REF) 2014 research assessment 87 per cent of our research was defined as 'world-leading' or 'internationally excellent'. From developing fuel efficient cars of the future, to identifying infectious diseases more quickly, or working to improve the lives of female farmers in West Africa, research from Bath is making a difference around the world. Find out more: http://www.bath.ac.uk/research/

Well established as a nurturing environment for enterprising minds, Bath is ranked highly in all national league tables. We are ranked 6th in the UK by The Guardian University Guide 2019, 5th for graduate employment in The Times & Sunday Times Good University Guide 2019, and 4th in the Times Higher Education Student Experience Survey 2018.

University of Bath

Related Stem Cell Articles:

Stem cell identity unmasked by single cell sequencing technology
Scientists from The University of Queensland's Diamantina Institute have revealed the difference between a stem cell and other blood vessel cells using gene-sequencing technology.
It's all about the (stem cell) neighborhood
Researchers at Duke-NUS Medical School have now identified how the stem cell neighbourhood, known as a niche, keeps stem cells in the gut alive.
Spaceflight activates cell changes with implications for stem cell-based heart repair
A new study of the effects of spaceflight on the development of heart cells identified changes in calcium signaling that could be used to develop stem cell-based therapies for cardiac repair.
Not just a stem cell marker
The protein CD34 is predominantly regarded as a marker of blood-forming stem cells but it helps with migration to the bone marrow too.
Interferon-beta producing stem cell-derived immune cell therapy on liver cancer
Induced pluripotent stem (iPS) cell-derived myeloid cells (iPS-ML) that produce the anti-tumor protein interferon-beta (IFN-beta) have been produced and analyzed by researchers from Kumamoto University, Japan.
Scientists aim to create the world's largest sickle cell disease stem cell library
Scientists at the Center for Regenerative Medicine at Boston Medical Center and Boston University School of Medicine are creating an induced pluripotent stem cell (iPSC)-based research library that opens the door to invaluable sickle cell disease research and novel therapy development.
Designer switches of cell fate could streamline stem cell biology
Researchers at the University of Wisconsin-Madison have developed a novel strategy to reprogram cells from one type to another in a more efficient and less biased manner than previous methods.
Allen Institute for cell science releases gene edited human stem cell lines
The Allen Institute for Cell Science has released the Allen Cell Collection: the first publicly available collection of gene edited, fluorescently tagged human induced pluripotent stem cells that target key cellular structures with unprecedented clarity.
Feng Zhang receives 2016 New York Stem Cell Foundation -- Robertson Stem Cell Prize
The New York Stem Cell Foundation (NYSCF) announced today that Feng Zhang, Ph.D., is the 2016 recipient of the NYSCF -- Robertson Stem Cell Prize for his pioneering advances to edit human and plant genomes using CRISPR-Cas9.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
More Stem Cell News and Stem Cell Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.