Nav: Home

The fine print

October 10, 2018

Sept. 27, 2018 -- With today's technology, we can 3-D-print sculptures, mechanical parts, prosthetics, even guns and food. But a team of University of Utah biomedical engineers have developed a method to 3-D-print cells to produce human tissue such as ligaments and tendons, a process that will greatly improve a patient's recovery. A person with a badly damaged ligament, tendon, or ruptured disc could simply have new replacement tissue printed and ultimately implanted in the damaged area, according to a new paper published in the Journal of Tissue Engineering, Part C: Methods.

"It will allow patients to receive replacement tissues without additional surgeries and without having to harvest tissue from other sites, which has its own source of problems," says University of Utah biomedical engineering assistant professor Robby Bowles, who co-authored the paper along with former U biomedical engineering master's student, David Ede.

The 3-D-printing method, which took two years to research, involves taking stem cells from the patient's own body fat and printing them on a layer of hydrogel to form a tendon or ligament which would later grow in vitro in a culture before being implanted. But it's an extremely complicated process because that kind of connective tissue is made up of different cells in complex patterns. For example, cells that make up the tendon or ligament must then gradually shift to bone cells so the tissue can attach to the bone.

"This is a technique in a very controlled manner to create a pattern and organizations of cells that you couldn't create with previous technologies," Bowles says of the printing process. "It allows us to very specifically put cells where we want them."

To do that, Bowles and his team worked with Salt Lake City-based company, Carterra, Inc., which develops microfluidic devices for medicine. Researchers used a 3-D printer from Carterra typically used to print antibodies for cancer screening applications. But Bowles' team developed a special printhead for the printer that can lay down human cells in the controlled manner they require. To prove the concept, the team printed out genetically-modified cells that glow a fluorescent color so they can visualize the final product.

Currently, replacement tissue for patients can be harvested from another part of the patient's body or sometimes from a cadaver, but they may be of poor quality. Spinal discs are complicated structures with bony interfaces that must be recreated to be successfully transplanted. This 3-D-printing technique can solve those problems.

Bowles, who specializes in musculoskeletal research, said the technology currently is designed for creating ligaments, tendons and spinal discs, but "it literally could be used for any type of tissue engineering application," he says. It also could be applied to the 3-D printing of whole organs, an idea researchers have been studying for years. Bowles also says the technology in the printhead could be adapted for any kind of 3-D printer.
-end-
This news release and photos may be downloaded from unews.utah.edu

University of Utah

Related Tissue Engineering Articles:

Tissue engineering advance reduces heart failure in model of heart attack
Researchers have grown heart tissue by seeding a mix of human cells onto a 1-micron-resolution scaffold made with a 3-D printer.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
RIT awarded $1.8 million NIH grant to develop ultrathin membranes for tissue engineering
Researchers at Rochester Institute of Technology are advancing tissue engineering through new work in developing improved porous membranes that will be the 'scaffolds,' or foundational structures, for in vitro tissue models.
Iowa State researchers fabricate microfibers for single-cell studies, tissue engineering
Iowa State University researchers are using the science of microfluidics -- the study of fluids moving through channels just a millionth of a meter wide -- to design and fabricate microfiber scaffolds that support cell growth and tissue engineering.
Breakthrough for bone regeneration via double-cell-layered tissue engineering technique
Tokyo Medical and Dental University researchers developed a technique for attaching two distinct layers of cells on top of each other on an amnion-based scaffold.
A novel hybrid polymer simplifies 3-D printing of scaffolds for tissue engineering
A new study describes the development of a novel hybrid polymer suitable for producing 3-D-printed scaffolds on which living cells can be seeded to create engineered tissues.
Engineering adult stem cells to regenerate tissue twice as fast
Kelly Schultz, assistant professor of chemical and biomolecular engineering at Lehigh University, received a three-year NIH grant to study how cells remodel their microenvironment -- a crucial step toward engineering cells to move through synthetic material and tissue more quickly for faster wound healing and tissue regeneration.
Lasers carve the path to tissue engineering
A new technique, developed at EPFL, combines microfluidics and lasers to guide cells in 3-D space, overcoming major limitations to tissue engineering.
Challenges of custom-engineering living tissue to fix a heart
Jianyi 'Jay' Zhang, M.D., Ph.D., works to create new tissue that can replace or protect damaged muscle after a heart attack.
Clay nanotube-biopolymer composite scaffolds for tissue engineering
Scientists of Bionanotechnology Lab, Kazan Federal University, combined three biopolymers, chitosan and agarose (polysaccharides), and a protein gelatine, as the materials to produce tissue engineering scaffolds and demonstrated the enhancement of mechanical strength (doubled pick load), higher water uptake and thermal properties in chitosan-gelatine-agarose hydrogels doped with halloysite.

Related Tissue Engineering Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...