Nav: Home

Volcano researcher learns how Earth builds supereruption-feeding magma systems

October 10, 2018

To figure out where magma gathers in the earth's crust and for how long, Vanderbilt University volcanologist Guilherme Gualda and his students traveled to their most active cluster: the Taupo Volcanic Zone of New Zealand, where some of the biggest eruptions of the last 2 million years occurred -- seven in a period between 350,000 and 240,000 years ago.

After studying layers of pumice visible in road cuts and other outcrops, measuring the amount of crystals in the samples and using thermodynamic models, they determined that magma moved closer to the surface with each successive eruption.

The project fits into Gualda's ongoing work studying supereruptions - how the magma systems that feed them are built and how the Earth reacts to repeated input of magma over short periods of time.

"As the system resets, the deposits become shallower," said Gualda, associate professor of earth and environmental sciences. "The crust is getting warmer and weaker, so magma can lodge itself at shallower levels."

What's more, the dynamic nature of the Taupo Volcanic Zone's crust made it more likely for the magma to erupt than be stored in the crust. The more frequent, smaller eruptions, which each produced 50 to 150 cubic kilometers of magma, likely prevented a supereruption. Supereruptions produce more than 450 cubic kilometers of magma and they affect the earth's climate for years following the eruption.

"You have magma sitting there that's crystal-poor, melt-rich for few decades, maybe 100 years, and then it erupts," Gualda said. "Then another magma body is established, but we don't know how gradually that body assembles. It's a period in which you're increasing the amount of melt in the crust."

The question that remains is how long it look for these crystal-rich magma bodies to assemble between eruptions. It could be thousands of years, Gualda said, but he believes it's shorter than that.
-end-
His findings are in a paper titled "Climbing the crustal ladder: Magma storage-depth evolution during a volcanic flare-up," which appears today in the journal Science Advances.

This work was made possible through National Science Foundation grant EAR-1151337.

Vanderbilt University

Related Magma Articles:

3D magnetotelluric imaging reveals magma recharging beneath Weishan volcano
Researches have succeeded in obtaining a high-resolution 3D resistivity model of approximately 20 km depth beneath the Weishan volcano in the Wudalianchi volcanic field (WVF) for the first time.
Study proves that magma chambers can be totally molten
The paper shows that basaltic magma chambers may develop as large bodies of crystal-free melts in the Earth's crust.
New study takes the pulse of a sleeping supervolcano
Under the volcanoes in the Andes where Chile, Argentina and Bolivia meet, there is a gigantic reservoir of molten magma.
How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.
Research shows why there's a 'sweet spot' depth for underground magma chambers
Computer models show why eruptive magma chambers tend to reside between six and 10 kilometers underground.
'Crystal clocks' used to time magma storage before volcanic eruptions
The molten rock that feeds volcanoes can be stored in the Earth's crust for as long as a thousand years, a result which may help with volcanic hazard management and better forecasting of when eruptions might occur.
Magma is the key to the moon's makeup
For more than a century, scientists have squabbled over how the Earth's moon formed.
'Amazing snapshots' plumb volcanic depths
Research shedding light on the internal 'plumbing' of volcanoes may help scientists better understand volcanic eruptions and unrest.
Volcanoes fed by 'mush' reservoirs rather than molten magma chambers
Volcanoes are not fed by molten magma formed in large chambers finds a new study, overturning classic ideas about volcanic eruptions.
Smaller, more frequent eruptions affect volcanic flare-ups
Eruption patterns in a New Zealand volcanic system reveal how the movement of magma rising through the crust leads to smaller, more frequent eruptions.
More Magma News and Magma Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.