Organs-on-chip technology reveals new drug candidates for Lou Gehrig's disease

October 10, 2018

The investigation of amyotrophic lateral sclerosis (ALS) - also known as Lou Gehrig's disease - through muscle-on-a-chip technology has revealed a new drug combination that may serve as an effective treatment of the progressive neurodegenerative disease. These findings highlight organ-on-a-chip technologies - in which live conditions of the body are mimicked in a microfluidic cell culture - as promising platforms for testing drug candidates and investigating the pathogenesis of ALS, which remains largely unknown. The disease currently impacts around 12,000 to 15,000 people in the U.S. ALS involves the loss of motor neurons in the spinal cord and motor cortex, which leads to progressive paralysis, muscle atrophy and death. While roughly 10% of ALS patients have a familial version of the disease, which can typically be traced back to a genetic mutation, 90% of patients have "sporadic ALS," which has no known familial links or causes. As the few FDA-approved drugs currently on the market for ALS lack full effectiveness, there is an urgent need for ALS therapy investigations in the clinic, using better clinical models that can go beyond the limitations of animal models. Here, Tatsuya Osaki and colleagues created disease-on-a-chip technology-based approach. It features a microfluidic chip loaded with healthy skeletal muscle bundles and induced pluripotent stem cell-derived, light-sensitive motor neurons from a sporadic ALS patient. Light was used to activate muscle contraction and control neural activity on the chips. Compared to chips with non-ALS-patient-derived cells, the ALS-on-a-chip exhibited fewer and weaker muscle contractions, degraded motor neurons, and increased muscle cell death. Application of two neuroprotective molecules - rapamycin and bosutinib (both in clinical trials) - helped recover muscle contraction induced by motor neuron activity and improve neuronal survival in the chip-based model of disease. Importantly, each treatment on its own has a limited ability to penetrate the blood-brain barrier, but when combined, the molecular duo could efficiently cross blood-brain-barrier-like cell layers built onto the chip.
-end-


American Association for the Advancement of Science

Related Amyotrophic Lateral Sclerosis Articles from Brightsurf:

Converting lateral scanning into axial focusing to speed up 3D microscopy
In optical microscopy, high-speed volumetric imaging is limited by either the slow axial scanning rate or aberrations introduced by the z-scanning mechanism.

Ammonium triggers formation of lateral roots
Despite the importance of changes in root architecture to exploit local nutrient patches, mechanisms integrating external nutrient signals into the root developmental program remain poorly understood.

'Reelin' in a new treatment for multiple sclerosis
In an animal model of multiple sclerosis (MS), decreasing the amount of a protein made in the liver significantly protected against development of the disease's characteristic symptoms and promoted recovery in symptomatic animals, UTSW scientists report.

Adjustable lordotic expandable vs static lateral lumbar interbody fusion devices
The objective of this study is to compare the clinical and radiographic outcomes between patients treated with static and expandable interbody spacers with adjustable lordosis for MIS LLIF.

Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation
Chiral nanoparticles which twist the light were theoretically predicted to experience lateral forces perpendicular to light vector but lacks experimental verification.

Not all multiple sclerosis-like diseases are alike
Scientists say some myelin-damaging disorders have a distinctive pathology that groups them into a unique disease entity.

Researchers delay onset of amyotrophic lateral sclerosis (ALS) in laboratory models
Scientists have delayed the onset of amyotrophic lateral sclerosis (ALS) in laboratory models, leaving them cautiously optimistic that the result, combined with other clinical advances, points to a potential treatment for ALS in humans.

Emerging role of adenosine in brain disorders and amyotrophic lateral sclerosis
The role of adenosine in neurodegeneration and neuroregeneration has led to growing attention on adenosine receptors as potential drug targets in a range of brain disorders, including neuroregenerative therapy and treatment for amyotrophyic lateral sclerosis (ALS).

New clues about the origins of familial forms of Amyotrophic lateral sclerosis
A Brazilian study made important progress in understanding the accumulation of one of the proteins involved in amyotrophic lateral sclerosis (ALS).

Recrutement of a lateral root developmental pathway into root nodule formation of legumes
Peas and other legumes develop spherical or cylindrical structures -- called nodules -- in their roots to establish a mutually beneficial relationship with bacteria that convert atmospheric nitrogen into a useable nutrient for the legume plant.

Read More: Amyotrophic Lateral Sclerosis News and Amyotrophic Lateral Sclerosis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.