Nav: Home

The culprit of superconductivity in cuprates

October 10, 2018

When it comes to high-temperature superconductors, "high" is a relative term. In the field of superconductivity, "high temperature" means anything that can still be superconductive over 30 degrees Kelvin (K), or a balmy -405 degrees Fahrenheit (F).

The first high-temperature superconductor was discovered in 1986, in ceramic compounds of copper and oxygen known as cuprates. These materials could reach superconductivity around

35 degrees Kelvin or -396.67 degrees Fahrenheit. In the following decades, that temperature limit increased and, to date, researchers have achieved superconductivity in cuprates at temperatures up to 135 degrees Kelvin.

It's important progress, to be sure, but room-temperature superconductivity, which requires operation at 300 degrees Kelvin, is still a long way off, if not impossible.

One of the biggest obstacles is that researchers still don't understand the complete underlying mechanisms of cuprate superconductivity and why there is such variability in superconducting transition temperature among cuprate compounds.

Now, researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) may have the answer. The researchers, led by Xin Li, Assistant Professor of Materials Science at SEAS, found that the strength of a particular chemical bond in cuprate compounds impacts the temperature at which the material achieves superconductivity.

The research is published in Physical Review Letters.

"This could be a new start for designing materials with high-temperature superconductivity," said Li. "Our research sheds lights on a key component of the complicated phenomena in cuprates and points us in a new and exciting direction for materials design."

All cuprates have the same structural building blocks - layered planes of copper peroxide (CuO2) with an out-of-plane oxygen ion, known as the apical oxygen. This oxygen ion sits above each copper atom in the CuO2 plane, like a buoy on the surface of water. The key difference between cuprate compounds comes from what other element is attached to the oxygen buoy. This element is known as the apical cation and can be a variety of elements including lanthanum, bismuth, copper, or mercury.

The temperature at which the material becomes superconductive changes depending on which element is used, but no one really knows why.

By comparing simulation and experiments, Li and his team demonstrated that the key is the bond between the apical cation and the apical oxygen -- the stronger the chemical bond, the higher temperature at which the material becomes superconductive.

But why does this bond raise superconductive temperatures?

Superconductors are often described as electron superhighways, or super carpool lanes, in which paired electrons are cars and the superconducting material is the special, frictionless road for the cars to move.

However, electrons don't really move across a high-temperature superconductor like a car on a road. Instead, they hop. This hopping process is made a lot easier when the crystal lattice on which the electrons are moving oscillates in a particular way.

A strong chemical bond between the apical anion and apical cation increases the oscillation of both the lattice and the induced electric current.

Imagine a kite tied to a buoy and many such kite-buoy units line up. If the bond between the kite and the buoy is strong, the kite can pull the buoy up and down, causing ripples and splashes in the water. The ripples are akin to the lattice oscillation and the splashes represent the electrons that get pushed out of theCuO2 plane. The ripples and splashes are not chaotic, rather, they cooperatively follow certain rules that tell the bouys how to oscillate in the best way to help the electron hop easily along the material.

"We demonstrated that this structural unit -- the copper oxygen layer, the apical anion, and the apical cation -- is a fundamental building block that can couple dynamically to control the superconductive properties of the material," said Li. "This opens up an entirely new avenue to explore the superconductive properties of materials."

Next, the researchers aim to explore how this novel effect impacts our understanding of the mysterious phase diagram in high-temperature superconductors, including the pairing mechanism in these superconductors.
-end-
This research was co-authored by postdoc Dr. Sooran Kim and graduate students Xi Chen and William Fitzhugh in Prof. Xin Li's group. It was supported by the computational resources from the Extreme Science and Engineering Discovery Environment (XSEDE) and the Odyssey cluster from the FAS Division of Science, Research Computing Group at Harvard University.

Harvard John A. Paulson School of Engineering and Applied Sciences

Related Superconductivity Articles:

Looking at light to explore superconductivity in boron-diamond films
More than a decade ago, researchers discovered that when they added boron to the carbon structure of diamond, the combination was superconductive.
Discovery in new material raises questions about theoretical models of superconductivity
The US Department of Energy's Ames Laboratory has successfully created the first pure, single-crystal sample of a new iron arsenide superconductor, CaKFe4As4, and studies of this material have called into question some long-standing theoretical models of superconductivity.
Superconductivity with two-fold symmetry -- new evidence for topological superconductor SrxBi2Se3
Topological superconductivity is the quantum condensate of paired electrons with an odd parity of the pairing function.
Portable superconductivity systems for small motors
Superconductivity is one of modern physics' most intriguing scientific discoveries.
Graphene's sleeping superconductivity awakens
The intrinsic ability of graphene to superconduct (or carry an electrical current with no resistance) has been activated for the first time.
Superconductivity of pure Bismuth crystal at 0.00053 K
Scientists at TIFR Mumbai have discovered superconductivity of pure Bismuth crystal.
When crystal vibrations' inner clock drives superconductivity
Superconductivity is like an Eldorado for electrons, as they flow without resistance through a conductor.
Physicists induce superconductivity in non-superconducting materials
Researchers at the University of Houston have reported a new method for inducing superconductivity in non-superconducting materials, demonstrating a concept proposed decades ago but never proven.
A new spin on superconductivity
Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have made a discovery that could lay the foundation for quantum superconducting devices.
Superconductivity: After the scenario, the staging
Superconductivity with a high Tc continues to present a theoretical mystery.

Related Superconductivity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...