New test offers improved diagnosis and management of chronic hepatitis B

October 10, 2019

Philadelphia, October 10, 2019 - A report in the Journal of Molecular Diagnostics, published by Elsevier, describes a new and powerful laboratory tool that may improve the diagnosis and treatment of hepatitis B virus (HBV) infection. The technique can simultaneously assess several indicators important for optimal patient management.

A team of scientists has developed a highly sensitive coamplification at lower denaturation temperature PCR (COLD-PCR) coupled with probe-based fluorescence melting curve analysis (FMCA) for precision diagnosis of chronic hepatitis B (CHB) patients. This novel tool is simple, stable, convenient, practical, inexpensive, and may be used routinely in the average hospital laboratory.

"Guidelines have confirmed that dynamic monitoring of HBV DNA, genotypes, and reverse transcriptase (RT) mutant DNA is of great importance to assess infection status, predict disease progression, and judge treatment efficacy in HBV-infected patients," explained lead investigator Qishui Ou, PhD, Department of Laboratory Medicine, The First Af?liated Hospital of Fujian Medical University, the Gene Diagnostic Laboratory, Fujian Medical University, and the Fujian Key Laboratory of Laboratory Medicine, Fuzhou, China. "We believe COLD-PCR/FMCA provides a powerful laboratory tool for precise diagnosis and treatment of HBV-infected patients."

Although a number of molecular methods have been developed for measuring these parameters, many are limited by poor sensitivity or inability to detect more than one mutation at a time. Others are too cumbersome or expensive for clinical use. "Our goal was to establish a more practical and inexpensive method with high sensitivity to detect genotype and RT mutations while detecting HBV DNA," noted Dr. Ou.

Moreover, COLD-PCR/FMCA can detect HBV mutations at much lower concentrations than other techniques such as PCR/FMCA or PCR Sanger sequencing (1 percent vs. 10 percent vs. 20 percent, respectively). This new technique can also distinguish different phases of HBV infection according to the proportion and type of mutations as well as by detecting HBV DNA.

The researchers also report that the genotype and mutation detected by COLD-PCR/FMCA may predict whether a patient will respond to antiviral therapy. Analysis of serum samples from 41 patients with CHB who were receiving entecavir revealed that the drug was most effective for patients with genotype B and those with a lower percentage of RT mutations at baseline or week 4.

"Until now there have not been high-throughput approaches to detect HBV DNA, genotype, and RT mutations simultaneously. Therefore, it is necessary to establish a more practical and inexpensive method with high sensitivity to detect genotype and RT mutations while detecting HBV DNA. COLD-PCR/FMCA has that potential," said Dr. Ou.

HBV infection affects the liver. According to the World Health Organization, as of 2015, 257 million individuals were living with and 887,000 died from HBV infection, usually as a result of cirrhosis (loss of liver cells and irreversible scarring of the liver) or liver cancer. In 2016, only about 10.5 percent of individuals infected with HBV were aware of their status, only a fraction of whom were receiving treatment. The virus is typically spread through contact with infected blood or bodily fluids. HBV can be prevented by vaccines that offer almost total protection against HBV infection.
-end-


Elsevier

Related Hepatitis Articles from Brightsurf:

Busting Up the Infection Cycle of Hepatitis B
Researchers at the University of Delaware have gained new understanding of the virus that causes hepatitis B and the ''spiky ball'' that encloses its genetic blueprint.

Liver cancer: Awareness of hepatitis D must be raised
Scientists from the University of Geneva (UNIGE) and the Geneva University Hospitals (HUG) have studied the most serious consequence of chronic hepatitis: hepatocellular carcinoma.

Hepatitis B: New therapeutic approach may help to cure chronic hepatitis B infection
Researchers at Helmholtz Zentrum München, Technical University of Munich (TUM) and the German Center for Infection Research (DZIF) have developed a novel therapeutic approach to cure chronic hepatitis B.

Anti-hepatitis medicine surprises
A new effective treatment of hepatitis C not only combats the virus, but is also effective against potentially fatal complications such as reduced liver functioning and cirrhosis.

Nanotechnology delivers hepatitis B vaccine
X-ray imaging shows that nanostructured silica acts as a protective vehicle to deliver intact antigen to the intestine so that it can trigger an immune response.

Checkmate for hepatitis B viruses in the liver
Researchers at Helmholtz Zentrum München and the Technical University of Munich, working in collaboration with researchers at the University Medical Center Hamburg-Eppendorf and the University Hospital Heidelberg, have for the first time succeeded in conquering a chronic infection with the hepatitis B virus in a mouse model.

How common is Hepatitis C infection in each US state?
Hepatitis C virus infection is a major cause of illness and death in the United States and injection drug use is likely fueling many new cases.

New strains of hepatitis C found in Africa
The largest population study of hepatitis C in Africa has found three new strains of the virus circulating in the general population in sub-Saharan Africa.

High stability of the hepatitis B virus
At room temperature, hepatitis B viruses (HBV) remain contagious for several weeks and they are even able to withstand temperatures of four degrees centigrade over the span of nine months.

Findings could lead to treatment of hepatitis B
Researchers have gained new insights into the virus that causes hepatitis B -- a life-threatening and incurable infection that afflicts more than 250 million people worldwide.

Read More: Hepatitis News and Hepatitis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.