Nav: Home

Researchers identify new therapeutic target for pulmonary fibrosis

October 10, 2019

Researchers in Japan have identified a genetic mutation that causes a severe lung disease called idiopathic pulmonary fibrosis (IPF) by killing the cells lining the lung's airways. The study, which will be published October 10 in the Journal of Experimental Medicine (JEM), suggests that protecting these cells by inhibiting a cell death pathway called necroptosis could be a new therapeutic approach to treating IPF.

IPF is a progressive, and often fatal, lung disease characterized by a gradual buildup of scar tissue within the lungs, causing patients severe breathing difficulties. "The environmental and genetic factors underlying IPF are largely unknown, and there are no effective approaches available to reverse development of the disease," explains Dr. Koji Yasutomo from Tokushima University Graduate School of Medicine in Japan.

Dr. Yasutomo and colleagues identified two Japanese brothers who succumbed to IPF in their early thirties. Sequencing of the brothers' DNA revealed that they carried a mutation--dubbed T622C--in both copies of a gene called SFTPA1. This gene encodes a protein, surfactant protein A1, that is secreted by the cells lining the lung's alveoli, the tiny air sacs that mediate the exchange of oxygen and carbon dioxide. This usually helps to prevent the alveoli from collapsing and protects them from bacterial infection. Mutations in the SFTPA1 gene have been found in other patients with IPF, but how these mutations might cause disease is unclear.

The researchers generated mice carrying the T622C mutation and found that they, too, developed IPF. Similar to IPF patients, the animals' condition was fatally exacerbated by influenza A infection. "This strongly suggests that the mutation we identified in human SFTPA1 was the cause of IPF in this family," Yasutomo says.

Yasutomo and colleagues determined that the T622C mutation in STFPA1 blocks the protein's release from alveolar cells, causing the cells to die via a process known as necroptosis. This form of cell death induces high levels of inflammation that is likely to increase the formation of scar tissue within the lung.

The researchers found that, instead of being secreted, the mutant form of SFTPA1 builds up inside the alveolar cells and activates a cellular stress pathway that boosts the levels of necroptosis-promoting proteins. Blocking this stress pathway, or otherwise reducing the levels of these necroptosis-promoting proteins, slowed the development of IPF in SFTPA1 mutant mice and allowed them to survive influenza A infection.

"Our study suggests that necroptosis is one of the crucial initiators of pulmonary fibrosis and that the necroptosis signaling pathway could be a potential target for its treatment," Yasutomo says. "The current focus for treating IPF is to block the activation of kinase enzymes within the fibrotic regions of the lung. In contrast, inhibiting necroptosis in alveolar cells would suppress earlier events in IPF progression, which would be more beneficial to patients."
-end-
Takezaki et al., 2019. J. Exp. Med.http://jem.rupress.org/cgi/doi/10.1084/jem.20182351?PR

 

# # #

About the Journal of Experimental MedicineThe Journal of Experimental Medicine (JEM) features peer-reviewed research on immunology, cancer biology, stem cell biology, microbial pathogenesis, vascular biology, and neurobiology. All editorial decisions are made by research-active scientists in conjunction with in-house scientific editors. JEM makes all of its content free online no later than six months after publication. Established in 1896, JEM is published by Rockefeller University Press. For more information, visit http://jem.rupress.org/>jem.org.

Visit our Newsroom">http://rupress.org/newsroom>Newsroom, and sign up for a weekly preview of articles to be published. Embargoed media alerts are for journalists only.

Follow JEM on Twitter at @JExpMed">https://twitter.com/jexpmed>@JExpMed and @RockUPress">https://twitter.com/rockupress>@RockUPress.

Rockefeller University Press

Related Pulmonary Fibrosis Articles:

The CNIO pave the way for a future gene therapy to reverse pulmonary fibrosis associated with ageing
''Our results indicate that a new therapy may be developed to prevent the development of pulmonary fibrosis associated with ageing,'' says CNIO's Maria Blasco, principal investigator of the study * Lung tissue of patients with pulmonary fibrosis does not regenerate because the cells involved in lung generation have damaged telomeres, the ends of the chromosomes.
Pulmonary fibrosis treatment shows proof of principle
A pre-clinical study led by scientists at Cincinnati Children's demonstrates that in mice the drug barasertib reverses the activation of fibroblasts that cause dangerous scar tissue to build up in the lungs of people with idiopathic pulmonary fibrosis (IPF).
Pulmonary embolism and COVID-19
Researchers at Henry Ford Health System in Detroit say early diagnosis of a life-threatening blood clot in the lungs led to swifter treatment intervention in COVID-19 patients.
Stem cells from placental amniotic membrane slow lung scarring in pulmonary fibrosis
In a study released today in STEM CELLS Translational Medicine (SCTM), researchers show for the first time how stem cells collected from human amniotic membrane can slow the progression of scarring in pulmonary fibrosis.
Researchers identify key mechanisms involved in pulmonary fibrosis development
Working alongside research groups from Heidelberg, researchers from Charité - Universitätsmedizin Berlin have elucidated the novel disease processes involved in the development of pulmonary fibrosis.
Bacterial protein fragment kills lung cells in pulmonary fibrosis, study finds
A bacterial protein fragment instigates lung tissue death in pulmonary fibrosis, a mysterious disease affecting millions of people worldwide, according to a new study from researchers at the University of Illinois at Urbana-Champaign and Mie University in Japan.
Closing in on liver fibrosis: Detailing the fibrosis process at unprecedented resolution
Today, there is no effective way to treat liver fibrosis.
Inhalation therapy shows promise against pulmonary fibrosis in mice, rats
A new study shows that lung stem cell secretions -- specifically exosomes and secretomes -- delivered via nebulizer, can help repair lung injuries due to multiple types of pulmonary fibrosis in mice and rats.
Cystic fibrosis carriers are at increased risk for cystic fibrosis-related conditions
A University of Iowa study challenges the conventional wisdom that having just one mutated copy of the cystic fibrosis (CF) gene has no effects on a person's health.
Short or long sleep associated with Pulmonary Fibrosis
Scientists have discovered that people who regularly sleep for more than 11 hours or less than 4 hours are 2-3 times more likely to have the incurable disease, pulmonary fibrosis, compared to those that sleep for 7 hours in a day.
More Pulmonary Fibrosis News and Pulmonary Fibrosis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#573 Penis. That's It. That's the title.
This episode is about penises. That was your content warning. Penises. Where they came from. Why they're useful. And the many, many wild things that animals do with them. Come for the world's oldest penis, stay for the creature that ejaculates 80 percent of its bodyweight. Host Bethany Brookshire talks with Emily Willingham about her new book, "Phallacy: Life Lessons from the Animal Penis".
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.