Nav: Home

Researchers identify new therapeutic target for pulmonary fibrosis

October 10, 2019

Researchers in Japan have identified a genetic mutation that causes a severe lung disease called idiopathic pulmonary fibrosis (IPF) by killing the cells lining the lung's airways. The study, which will be published October 10 in the Journal of Experimental Medicine (JEM), suggests that protecting these cells by inhibiting a cell death pathway called necroptosis could be a new therapeutic approach to treating IPF.

IPF is a progressive, and often fatal, lung disease characterized by a gradual buildup of scar tissue within the lungs, causing patients severe breathing difficulties. "The environmental and genetic factors underlying IPF are largely unknown, and there are no effective approaches available to reverse development of the disease," explains Dr. Koji Yasutomo from Tokushima University Graduate School of Medicine in Japan.

Dr. Yasutomo and colleagues identified two Japanese brothers who succumbed to IPF in their early thirties. Sequencing of the brothers' DNA revealed that they carried a mutation--dubbed T622C--in both copies of a gene called SFTPA1. This gene encodes a protein, surfactant protein A1, that is secreted by the cells lining the lung's alveoli, the tiny air sacs that mediate the exchange of oxygen and carbon dioxide. This usually helps to prevent the alveoli from collapsing and protects them from bacterial infection. Mutations in the SFTPA1 gene have been found in other patients with IPF, but how these mutations might cause disease is unclear.

The researchers generated mice carrying the T622C mutation and found that they, too, developed IPF. Similar to IPF patients, the animals' condition was fatally exacerbated by influenza A infection. "This strongly suggests that the mutation we identified in human SFTPA1 was the cause of IPF in this family," Yasutomo says.

Yasutomo and colleagues determined that the T622C mutation in STFPA1 blocks the protein's release from alveolar cells, causing the cells to die via a process known as necroptosis. This form of cell death induces high levels of inflammation that is likely to increase the formation of scar tissue within the lung.

The researchers found that, instead of being secreted, the mutant form of SFTPA1 builds up inside the alveolar cells and activates a cellular stress pathway that boosts the levels of necroptosis-promoting proteins. Blocking this stress pathway, or otherwise reducing the levels of these necroptosis-promoting proteins, slowed the development of IPF in SFTPA1 mutant mice and allowed them to survive influenza A infection.

"Our study suggests that necroptosis is one of the crucial initiators of pulmonary fibrosis and that the necroptosis signaling pathway could be a potential target for its treatment," Yasutomo says. "The current focus for treating IPF is to block the activation of kinase enzymes within the fibrotic regions of the lung. In contrast, inhibiting necroptosis in alveolar cells would suppress earlier events in IPF progression, which would be more beneficial to patients."
-end-
Takezaki et al., 2019. J. Exp. Med.http://jem.rupress.org/cgi/doi/10.1084/jem.20182351?PR

 

# # #

About the Journal of Experimental MedicineThe Journal of Experimental Medicine (JEM) features peer-reviewed research on immunology, cancer biology, stem cell biology, microbial pathogenesis, vascular biology, and neurobiology. All editorial decisions are made by research-active scientists in conjunction with in-house scientific editors. JEM makes all of its content free online no later than six months after publication. Established in 1896, JEM is published by Rockefeller University Press. For more information, visit http://jem.rupress.org/>jem.org.

Visit our Newsroom">http://rupress.org/newsroom>Newsroom, and sign up for a weekly preview of articles to be published. Embargoed media alerts are for journalists only.

Follow JEM on Twitter at @JExpMed">https://twitter.com/jexpmed>@JExpMed and @RockUPress">https://twitter.com/rockupress>@RockUPress.

Rockefeller University Press

Related Pulmonary Fibrosis Articles:

Bacterial protein fragment kills lung cells in pulmonary fibrosis, study finds
A bacterial protein fragment instigates lung tissue death in pulmonary fibrosis, a mysterious disease affecting millions of people worldwide, according to a new study from researchers at the University of Illinois at Urbana-Champaign and Mie University in Japan.
Closing in on liver fibrosis: Detailing the fibrosis process at unprecedented resolution
Today, there is no effective way to treat liver fibrosis.
Inhalation therapy shows promise against pulmonary fibrosis in mice, rats
A new study shows that lung stem cell secretions -- specifically exosomes and secretomes -- delivered via nebulizer, can help repair lung injuries due to multiple types of pulmonary fibrosis in mice and rats.
Cystic fibrosis carriers are at increased risk for cystic fibrosis-related conditions
A University of Iowa study challenges the conventional wisdom that having just one mutated copy of the cystic fibrosis (CF) gene has no effects on a person's health.
Short or long sleep associated with Pulmonary Fibrosis
Scientists have discovered that people who regularly sleep for more than 11 hours or less than 4 hours are 2-3 times more likely to have the incurable disease, pulmonary fibrosis, compared to those that sleep for 7 hours in a day.
Research points to possible target to treat idiopathic pulmonary fibrosis, or IPF
In a study of idiopathic pulmonary fibrosis, or IPF, recruited monocyte-derived macrophages with increased flux in their mevalonate pathway were able induce lung fibrosis in a mouse model without prior lung injury.
Researchers identify new therapeutic target for pulmonary fibrosis
Researchers in Japan have identified a genetic mutation that causes a severe lung disease called idiopathic pulmonary fibrosis (IPF) by killing the cells lining the lung's airways.
Promising steps towards a treatment for pulmonary fibrosis
Research published in the journal Science Translational Medicine on 25 September by members of the Cardiovascular Disease Mechanisms group at the MRC LMS in collaboration with Duke-NUS Medical School, National Heart Centre Singapore & National Heart and Lung Institute, Imperial College London, showed that blocking a protein called interleukin-11 (IL-11) using therapeutic antibodies can reverse the fibrosis in the lung.
African-Americans with COPD appear less likely to use pulmonary rehab
African-American patients with chronic obstructive pulmonary disease, or COPD, are less likely to participate in pulmonary rehabilitation programs than white patients, even when there are programs nearby.
CU Anschutz researchers discover important breakthrough in pulmonary fibrosis
A team of investigators led by members of the University of Colorado School of Medicine faculty at CU Anschutz Medical Campus has identified a connection between mucus in the small airways and pulmonary fibrosis.
More Pulmonary Fibrosis News and Pulmonary Fibrosis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.