Science snapshots -- Waste to fuel, moire superlattices, mining cellphones for energy data

October 10, 2019

Trash to Treasure: Scientists Convert Municipal Waste to Biofuel Precursors
By Emily Scott

As the need for energy security grows, scientists are investigating nonfood biomass sources that can be used to create valuable biofuels and bioproducts. Among these sources is municipal solid waste (MSW) -- in other words, trash that's produced every day around the world in significant amounts.

In a new study published in the journal ChemSusChem, researchers at Berkeley Lab created six blends that combined MSW items (non-recyclable paper and grass clippings) with biomass (corn stover and switchgrass). Using an ionic liquid-based process, they converted these blends into methyl ketones, which are chemical compounds that can be used as diesel fuel precursors.

This is the first report on the conversion of MSW to methyl ketones using an ionic liquid process, an efficient biomass pretreatment process that is becoming more sustainable. The research was a collaboration between the Joint BioEnergy Institute and the Advanced Biofuels and Bioproducts Process Development Unit (both established by the Department of Energy and based at Berkeley Lab), where researchers scaled up one of these blends 30-fold and are currently attempting to scale up the process even further.

"The ionic liquid-based conversion represents an efficient and more environmentally friendly process for biomass upgrading," said Berkeley Lab researcher Ning Sun, the study's corresponding author. "This opens the door to building biorefinery facilities that use diversified feedstocks to produce a range of chemicals."

Simple Materials Offer a Peek into the Quantum Realm
By Aliyah Kovner

As reported in Nature Physics, a Berkeley Lab-led team of physicists and materials scientists was the first to unambiguously observe and document the unique optical phenomena that occur in certain types of synthetic materials called moire; superlattices. The new findings will help researchers understand how to better manipulate materials into light emitters with controllable quantum properties.

Moire; superlattices are made by layering sheets of single-atom-thick materials on top of one another in precise configurations to create a larger and more complex overall pattern. In these arrangements, the otherwise simple composite materials display intriguing behavior.

For example, recent studies from the same team showed that moire; superlattices made with three layers of graphene sandwiched in between layers of boron nitride can act as an exotic insulator and a high-temperature superconductor.

In the current study, Berkeley Lab graduate student researcher Emma Regan and her colleagues used two highly sensitive spectroscopy approaches to examine the excitons (bound pairs of electrons and electron-holes, which occur in semiconductive materials) across the layers of a moire; superlattice formed by tungsten disulfide and tungsten diselenide.

"Our work provides needed clarity on how the excitons in moire; superlattices can exist in different states," said Regan. "And now we know a straightforward way to create perfect arrays of interlayer excitons with distinct optical properties, which can serve as light emitters in next-generation electronic devices."

Can Cellphones Help Cities Be More Energy Efficient?
By Linda Vu

Buildings currently consume about 40% of all the electricity used in the United States, most of them located in urban areas that are growing rapidly. Because electricity generation is the largest source of greenhouse gas emissions in the country, making urban buildings more energy efficient could help mitigate global climate change.

In order to achieve efficient buildings at a city-wide scale, accurate occupancy estimations are crucial. These estimates need to take into account the fact that people move around their cities throughout the day, from home to work, which drives energy consumption for different building types. Now, a model developed by researchers from Berkeley Lab, UC Berkeley, and MIT can do just that. A paper describing the tool, which uses passively collected cellphone data to improve urban scale building occupancy and mobility estimates, was recently published in Nature Communications.

"Understanding building occupancy at an urban-scale allows us to plan better for collective energy use. Like traffic apps that tell you the current state of road congestion, we envision a model that could potentially tell users what the energy demands are in different places and therefore identify bespoke efficiency measures," said Berkeley Lab scientist Marta Gonzalez, who is also a UC Berkeley professor of Civil and Environmental Engineering and co-author of the paper. "The tool could also potentially connect to smart-devices that automatically adjust to the energy demand."

Read the full article from Berkeley Engineering here.

DOE/Lawrence Berkeley National Laboratory

Related Biomass Articles from Brightsurf:

Bound for the EU, American-made biomass checks the right boxes
A first-of-its-kind study published in the journal Scientific Reports finds that wood produced in the southeastern United States for the EU's renewable energy needs has a net positive effect on US forests--but that future industry expansion could warrant more research.

The highest heat-resistant plastic ever is developed from biomass
The use of biomass-derived plastics is one of the prime concerns to establish a sustainable society, which is incorporated as one of the Sustainable Development Goals.

Laser technology measures biomass in world's largest trees
Laser technology has been used to measure the volume and biomass of giant Californian redwood trees for the first time, records a new study by UCL researchers.

Inducing plasma in biomass could make biogas easier to produce
Producing biogas from the bacterial breakdown of biomass presents options for a greener energy future, but the complex composition of biomass comes with challenges.

Microbes working together multiply biomass conversion possibilities
Non-edible plants are a promising alternative to crude oil, but their heterogenous composition can be a challenge to producing high yields of useful products.

Evergreen idea turns biomass DNA into degradable materials
A Cornell-led collaboration is turning DNA from organic matter -- such as onions, fish and algae -- into biodegradable gels and plastics.

Upgrading biomass with selective surface-modified catalysts
Loading single platinum atoms on titanium dioxide promotes the conversion of a plant derivative into a potential biofuel.

A novel biofuel system for hydrogen production from biomass
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has presented a new biofuel system that uses lignin found in biomass for the production of hydrogen.

Biomass fuels can significantly mitigate global warming
'Every crop we tested had a very significant mitigation capacity despite being grown on very different soils and under natural climate variability,' says Dr.

Traditional biomass stoves shown to cause lung inflammation
Traditional stoves that burn biomass materials and are not properly ventilated, which are widely used in developing nations where cooking is done indoors, have been shown to significantly increase indoor levels of harmful PM2.5 (miniscule atmospheric particulates) and carbon monoxide (CO) and to stimulate biological processes that cause lung inflammation and may lead to chronic obstructive pulmonary disease (COPD), according to new research published online in the Annals of the American Thoracic Society.

Read More: Biomass News and Biomass Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to