Nav: Home

Watching energy transport through biomimetic nanotubes

October 10, 2019

Scientists from the University of Groningen (the Netherlands) and the University of Würzburg (Germany) have investigated a simple biomimetic light-harvesting system using advanced spectroscopy combined with a microfluidic platform. The double-walled nanotubes work very efficiently at low light intensities, while they are able to get rid of excess energy at high intensities. These properties are useful in the design of novel materials for the harvesting and transport of photon energy. The results were published in the journal Nature Communications on 10 October.

The remarkable ability of natural photosynthetic complexes to efficiently harness sunlight - even in dark environments - has sparked widespread interest in deciphering their functionality. Understanding energy transport on the nanoscale is key for a range of potential applications in the field of (opto)electronics. The overwhelming complexity of natural photosynthetic systems, consisting of many hierarchically arranged sub-units, led scientists to turn their attention to biomimetic analogs, which are structured like their natural counterparts but can be more easily controlled.

Ligh-harvesting molecules

The Optical Condensed Matter Science group and the Theory of Condensed Matter group (both at the Zernike Institute for Advanced Materials, University of Groningen) have joined forces with colleagues from the University of Würzburg (Germany) to gain a comprehensive picture of energy transport in an artificial light-harvesting complex. They used a new spectroscopic lab-on-a-chip approach, which combines advanced time-resolved multidimensional spectroscopy, microfluidics, and extensive theoretical modeling.

The scientists investigated an artificial light-harvesting device, inspired by the multi-walled tubular antenna network of photosynthetic bacteria found in nature. The biomimetic device consists of nanotubes made out of light-harvesting molecules, self-assembled into a double-walled nanotube. 'However, even this system is rather complex,' explains Maxim Pshenichnikov, professor of ultrafast spectroscopy at the University of Groningen. His group devised a microfluidic system, in which the outer wall of the tube can be selectively dissolved and, thus, switched off. 'This is not stable, but in the flow system, it can be studied.' In this way, the scientists could study both the inner tube and the complete system.

Adapting

At low light intensity, the system absorbs photons in both walls, creating excitations or excitons. 'Due to the different sizes of the walls, they absorb photons of different wavelengths,' Pshenichnikov explains. 'This increases the efficiency.' At high light intensity, a large number of photons are absorbed, creating a huge number of excitons. 'We observed that, when two excitons meet, one of them actually ceases to exist.' This effect acts as a kind of safety valve, as high numbers of excitons could damage the nanotubes.

Thus, the scientists also demonstrated that the double-walled molecular nanotube is capable of adapting to changing illumination conditions. They mimic the essential functional elements of nature's design toolbox at low light conditions by acting as highly sensitive antennas but get rid of excess energy at high intensities when there is too much light - a situation that would not normally occur in nature. Both these properties pave the way for better control of the transport of energy through complex molecular materials.

Reference: Björn Kriete, Julian Lüttig, Tenzin Kunsel, Pavel Malý, Thomas L. C. Jansen, Jasper Knoester, Tobias Brixner & Maxim S. Pshenichnikov: Interplay between Structural Hierarchy and Exciton Diffusion in Artificial Light Harvesting, Nature Communications, 10 October 2019
-end-


University of Groningen

Related Nanotubes Articles:

Groovy key to nanotubes in 2D
New research offers a groovy answer to the question of what causes carbon nanotubes to align in ultrathin crystalline films discovered at Rice.
Growing carbon nanotubes with the right twist
Researchers synthetize nanotubes with a specific structure expanding previous theories on carbon nanotube growth.
Clean carbon nanotubes with superb properties
Scientists at Aalto University, Finland, and Nagoya University, Japan, have found a new way to make ultra-clean carbon nanotube transistors with superior semiconducting properties.
Watching energy transport through biomimetic nanotubes
Scientists from the University of Groningen (the Netherlands) and the University of Würzburg (Germany) have investigated a simple biomimetic light-harvesting system using advanced spectroscopy combined with a microfluidic platform.
Neural networks will help manufacture carbon nanotubes
A team of scientists from Skoltech's Laboratory of Nanomaterials proposed a neural-network-based method for monitoring the growth of carbon nanotubes, preparing the ground for a new generation of sophisticated electronic devices.
Photovoltaic nanotubes
Physicists discovered a novel kind of nanotube that generates current in the presence of light.
Chemical synthesis of nanotubes
For the first time, researchers used benzene -- a common hydrocarbon -- to create a novel kind of molecular nanotube, which could lead to new nanocarbon-based semiconductor applications.
Nanotubes may give the world better batteries
Rice University scientists use thin films of multiwalled carbon nanotubes to keep lithium metal from sprouting dendrites, tentacle-like growths that can cause batteries to fail.
Deformation of nanotubes to control conductivity
Scientists from the NUST MISIS Laboratory of Inorganic Nanomaterials together with their international colleagues have proved it possible to change the structural and conductive properties of nanotubes by stretching them.
Nanotubes change the shape of water
Nanotubes of the right diameter can prompt water inside to solidify into a square tube, transitioning into a kind of ice.
More Nanotubes News and Nanotubes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.