Nav: Home

Plant death may reveal genetic mechanisms underlying cell self-destruction

October 10, 2019

Hybrid plants - those produced by crossing two different types of parents - often die in conditions in which both parents would survive. It's called hybrid lethality. Certain hybrid tobacco plants, for example, thrive at 36 degrees Celsius, but die at 28 degrees Celsius, which is the temperature at which both parents would thrive.

A team of researchers at Tokyo University of Agriculture and Technology (TUAT) based in Japan have begun to unravel the molecular mechanisms by which hybrid tobacco plant cells meet their demise. The researchers published their results online on July 15 in Scientific Reports, a Nature journal. Hybrid tobacco plants were chosen for the study because they offer a good genetic model to study other hybrid plants.

When moved to the lower temperature, hybrid tobacco cells induce a process called programmed cell death. It sounds dramatic, but it's normal and healthy - to a point. In humans, for instance, skin cells slough off when new ones are ready to take over. It's a constant renewal. However, in some circumstances, the cells become overzealous and die off before there are replacements available, causing the entire organism to die.

"What induces programmed cell death related to hybrid lethality in plants?" asked Tetsuya Yamada, paper author and associate professor at the United Graduate School of Agricultural Science at Tokyo University of Agriculture and Technology. "This is the problem we set out to better understand."

The researchers used powerful imaging tools to see inside the hybrid cells. They found protein aggregates - proteins that are misfolded or otherwise mutated - accumulated in hybrid cells.

"We found programmed cell death is induced in plant cells by the accumulation of protein aggregates resulting from loss of protein homeostasis," Yamada said.

Protein homeostasis refers to the intricate and fragile balance between the development of new proteins and the death of old proteins in the already delicate cellular ecosystem. The loss of homeostasis may resulted from an autoimmune response, which is induced after the temperature shift, according to Yamada.

In an effort to combat this cellular decay, the researchers treated hybrid tobacco cells with a type of salt (sodium-4-phenylbutyrate) known to help proteins fold properly. Yamada calls it a "chemical chaperone." It not only stopped the accumulation of protein aggregates, but it also stopped what had previously been the irreversible progression of cell death.

Next, Yamada and the researchers plan to further investigate how the accumulation of protein aggregates are involved in inducing programmed cell death, specifically in relation to disease resistance and environmental stress in plants.

"We will also clarify the molecular mechanisms involved in the regulation of protein homeostasis," Yamada said. "The ultimate goal is to establish a genetic improvement technique for developing crop varieties with improved disease resistance and environmental stress tolerance by enhancing the function of maintaining protein homeostasis."
-end-
Other contributors from the United Graduate School of Agricultural Science at Tokyo University of Agriculture and Technology include Naoya Ueno, Megumi Kashiwagi and Motoki Kanekatsu. Wataru Marubashi of the Faculty of Agricultural Science at Meiji University also contributed.

This work was supported in part by the Japan Society for the Promotion of Science.

About Tokyo University of Agriculture and Technology (TUAT)

TUAT is a distinguished university in Japan dedicated to science and technology. TUAT focuses on agriculture and engineering that form the foundation of industry, and promotes education and research fields that incorporate them. Boasting a history of over 140 years since our founding in 1874, TUAT continues to boldly take on new challenges and steadily promote fields. With high ethics, TUAT fulfills social responsibility in the capacity of transmitting science and technology information towards the construction of a sustainable society where both human beings and nature can thrive in a symbiotic relationship. For more information, please visit http://www.tuat.ac.jp/en/.

Original publication:

Accumulation of protein aggregates induces autolytic programmed cell death in hybrid tobacco cells expressing hybrid lethality.
Naoya Ueno, Megumi Kashiwagi, Motoki Kanekatsu, Wataru Marubashi & Tetsuya Yamada*.
Scientific Reports volume 9, Article number: 10223 (2019)
https://doi.org/10.1038/s41598-019-46619-5

Tokyo University of Agriculture and Technology

Related Cell Death Articles:

New players in the programmed cell death mechanism
Skoltech researchers have identified a set of proteins that are important in the process of apoptosis, or programmed cell death.
Tumors hijack the cell death pathway to live
Cancer cells avoid an immune system attack after radiation by commandeering a cell signaling pathway that helps dying cells avoid triggering an immune response, a new study led by UTSW scientists suggests.
How trans fats assist cell death
Tohoku University researchers in Japan have uncovered a molecular link between some trans fats and a variety of disorders, including cardiovascular and neurodegenerative diseases.
Bacteria can 'outsmart' programmed cell death
To be able to multiply, bacteria that cause diarrhoea block mediators of programmed cell death, a new study in 'Nature Microbiology' shows.
Breaking the dogma: Key cell death regulator has more than one way to get the job done
Immunologists from St. Jude Children's Research Hospital have revealed two independent mechanisms driving self-defense molecules to trigger cell death.
Cell death or cancer growth: A question of cohesion
Activation of CD95, a receptor found on all cancer cells, triggers programmed cell death -- or does the opposite, namely stimulates cancer cell growth.
Cell death blocker prevents healthy cells from dying
Researchers have discovered a proof-of-concept drug that can prevent healthy cells from dying in the laboratory.
Road to cell death mapped in the Alzheimer's brain
Scientists have identified a new mechanism that accelerates aging in the brain and gives rise to the most devastating biological features of Alzheimer's disease.
Preventing cell death as novel therapeutic strategy for rheumatoid arthritis
A collaborative study by research groups from the University of Cologne, VIB, Ghent University, the Βiomedical Sciences Research Center 'Alexander Fleming' in Athens and the University of Tokyo identified a new molecular mechanism causing rheumatoid arthritis.
Atherosclerosis: Induced cell death destabilizes plaques
Many chronic disorders arise from misdirected immune responses. A Ludwig-Maximilians-Universitaet (LMU) in Munich team led by Oliver Söhnlein now shows that neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death and that a tailored peptide inhibits the process.
More Cell Death News and Cell Death Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.