Study: 'Run-down feeling' with illness may last longer as people age

October 11, 2005

CHAMPAIGN, Ill. -- Aging may intensify and prolong feeling run down when common infections like the flu occur, according to researchers at the University of Illinois at Urbana-Champaign.

A new study, done with mice and published in the Federation of the American Societies of Experimental Biology Journal, suggests that miscommunication between the immune system and brain may be to blame for extended sickness symptoms and other cognitive disorders in elderly people and animals with an infection.

"In the course of our other studies on inflammation and aging, we repeatedly saw that old animals suffered an exaggerated inflammatory response in the brain compared to younger adults when their peripheral immune system was experimentally activated," said Rodney W. Johnson, a professor of integrative immunology and behavior in the department of animal sciences. "Knowing the role of brain inflammation in behavioral deficits and neurodegenerative diseases, we felt this could be important, especially because immunity is often suppressed in the elderly, making them more susceptible to infections."

Johnson and his colleagues compared behavior in young adult and aged mice that were made temporarily ill by exposure to lipopolysaccharide (LPS), a molecule present on E. coli and other gram-negative bacteria that strongly activates the immune system.

"When a person or pet develops an infection, their behavior changes: They stop eating; they become lethargic; they have reduced cognitive abilities," Johnson said.

How do you know a mouse feels sick? Like unhealthy humans, mice show decreased appetite, weight loss and less social interaction, said Johnson, who likened his own lack of interest in getting up off the couch to greet visitors when he is sick to a mouse's lack of curiosity about new cage mates when it is sick.

LPS injections caused older mice to stop eating for a longer amount of time, lose more weight and show less social behavior than younger mice.

"As expected, young adults showed signs of improvement eight hours after LPS treatment and fully recovered by the next day, but the aged animals still were 50 to 60 percent depressed," Johnson said. "We've completed follow-up studies that show aged animals are still depressed three to four days later."

Johnson and colleagues also studied how aging affects the response of microglial cells -- key immune cells in the brain -- during a peripheral infection.

It is important that the peripheral immune system inform the brain of an infection, Johnson said. "The peripheral immune system signals microglia to secrete inflammatory cytokines that cause behavioral changes."

In many ways microglia act as the Red Cross, he added. They can converge upon sites of injury in the brain to scour away neuronal debris and begin repairs, and during a peripheral infection the cytokines they produce cause behavioral changes that support convalescence and healing. However, if microglia overreact, the result can be pathological.

Johnson's study, which was published in August, revealed that older animals had an exaggerated inflammatory cytokine response in the brain compared with young animals when the peripheral immune system was stimulated with LPS.

"In the old animals, the message of a peripheral infection is conveyed to the brain, but the cells in the brain have an exaggerated response and produce more inflammatory cytokines than what is typical," Johnson said. "The exaggerated response can lead to a more intense and longer-lasting sickness behavior syndrome."

To study the phenomenon further, Johnson and colleagues examined the expression of more than 39,000 genes in the brain using microarray technology. The approach was helpful, because the gene expression pattern indicated brain inflammation emerged during aging. The emergence of a mild but chronic neuroinflammatory state appears to have a priming effect on microglial cells, Johnson said.

"Chronic neurodegenerative diseases prime microglia so that when an individual develops a peripheral infection, these cells overreact and exacerbate neurodegenerative disease," he said. "Peripheral infection is now recognized as a significant risk factor for relapse for multiple sclerosis, for example, and peripheral infection is a risk factor for delirium in Alzheimer's patients."

The research suggests that normal aging also may prime microglia, Johnson said.

The six co-authors with Johnson on the study were postdoctoral researcher Jonathan P. Godbout; research associate Jing Chen; graduate students Jayne Abraham, Amy F. Richwine and Brian M. Berg; and Keith W. Kelley, a professor of integrative immunology and behavior in the department of animal sciences.
Funding was provided by the National Institutes of Health. Godbout, now a professor at Ohio State University, was supported by a National Research Service Award from the National Institutes of Health to the U. of I.'s Division of Nutritional Sciences.


University of Illinois at Urbana-Champaign

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to