Feedback loop found that could forestall liver disease

October 11, 2005

DALLAS - Oct. 11, 2005 - Researchers at UT Southwestern Medical Center have discovered that the small intestine communicates with the liver to control the production of bile acids - a finding that has great medical implications in treating people at risk for certain types of liver disease.

"We've discovered a new hormone, and new hormones are always exciting," said Dr. Steven Kliewer, professor of molecular biology and pharmacology and senior author of a study available online and appearing in the October issue of Cell Metabolism.

The findings may eventually play a role in understanding and preventing liver damage that can occur in biliary cirrhosis, viral hepatitis, alcoholic liver disease and pregnancy.

The central elements in the research are the body's bile acids - powerful and essential detergents that help digest fatty foods and fat-soluble vitamins in the small intestine.

The liver makes bile acids out of cholesterol and sends them to the gall bladder, where they're stored until food is digested. The presence of food stimulates the gall bladder into releasing the bile acids to the small intestine, where they do their work. Finally, they're absorbed into the bloodstream and returned to the liver.

Because they're so powerful, bile acids can damage the body if not controlled properly.

"These bile acids are really nasty in terms of being strong detergents," said Dr. Kliewer, holder of the Nancy B. and Jake L. Hamon Distinguished Chair in Basic Cancer Research.

Scientists have previously known about a mechanism within the liver that prevents too much bile acid from being produced. Normally, a protein called CYP7A1 stimulates production of the acids. When enough bile acids are made, they trigger a series of reactions that blocks the gene for CYP7A1, and production stops.

For this study, UT Southwestern researchers looked at a protein in mice called fibroblast growth factor 15 (FGF15), which is part of a cascade of chemical reactions that also dialed down production of CYP7A1 and reduced the production of bile acids in the liver.

Surprisingly, they found that FGF15 was made in the small intestine, not in the liver, suggesting a new role for the small intestine in regulating bile acid levels.

When the researchers injected FGF15 into the bloodstream, CYP7A1 production in the liver was again shut down. Conversely, mutant mice lacking FGF15 made too much CYP7A1, and thus had abnormally high levels of bile acids.

"We can inject FGF15 in the jugular vein, and see the effects in the liver," Dr. Kliewer said.

These discoveries pointed to FGF15 acting as a hormone, which is defined as a substance that's secreted into the bloodstream to work on distant targets.

The findings may be relevant to diseases that involve a condition called cholestatis, in which the bile ducts are blocked. When that happens bile acids accumulate in the liver and severe liver disease may follow. Cholestatis can also occur in patients who are getting all their nutrition through intravenous feeding, because the gall bladder never receives the signal from the small intestine to release bile acids.

Dr. Kliewer said perhaps giving cholestatis patients FGF19 - the human equivalent of FGF15 - may turn off the overproduction of harmful bile acids in these cases.

"So now we have a hormone that's not going to damage the liver, that we could perhaps administer and turn off the production of bile acids, and that could alleviate one of the important causes of cholestatis," he said. "I think that's one of the exciting implications of this."

Future research is needed to determine whether the fibroblast growth factor protein family prevents liver disease in animals, Dr. Kliewer said.

Other UT Southwestern researchers involved in the study were Drs. Takeshi Inagaki and Mihwa Choi, postdoctoral research fellows in molecular biology; Dr. Antonio Moschetta, postdoctoral research fellow in pharmacology and a research associate in the Howard Hughes Medical Institute; Li Peng, senior research assistant in molecular biology; Dr. Carolyn Cummins, postdoctoral research fellow in pharmacology and HHMI research associate; Dr. Jeffrey McDonald, assistant professor of molecular genetics; Dr. James Richardson, professor of pathology; Dr. Robert Gerard, associate professor of internal medicine and of molecular biology; Dr. Joyce Repa, assistant professor of physiology; and Dr. David Mangelsdorf, professor of pharmacology and an HHMI investigator. Researchers from GlaxoSmithKline Research and Development also participated.

The work was supported by the National Institutes of Health, the Welch Foundation and HHMI.
-end-
This news release is available on our World Wide Web home page at http://www8.utsouthwestern.edu/utsw/cda/dept37389/files/248369.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

UT Southwestern Medical Center

Related Liver Disease Articles from Brightsurf:

Fatty liver disease despite a normal weight
Researchers from the University of Tsukuba found significant differences in the clinical presentation of non-obese patients with non-alcoholic fatty liver disease (NAFLD) based on their sex and body mass index.

Sobering reminder about liver disease
Alcohol's popularity and its central place in socialising in Australia obscures the dangers of excessive drinking and possible liver disease, Flinders University experts warn.

Giant leap in diagnosing liver disease
A collaborative team of Salk Institute and UC San Diego scientists have created a novel microbiome-based diagnostic tool that, with the accuracy of the best physicians, quickly and inexpensively identifies liver fibrosis and cirrhosis over 90 percent of the time in human patients.

Link between liver and heart disease could lead to new therapeutics
A newly published study of flies found that protecting liver function also preserves heart health.

Fatty liver disease is underdiagnosed in the US
According to an analysis published in Alimentary Pharmacology & Therapeutics, nonalcoholic fatty liver disease (NAFLD) is grossly underdiagnosed in the United States.

Possible new treatment strategy for fatty liver disease
Researchers at Karolinska Institutet in Sweden have identified a molecular pathway that when silenced could restore the normal function of immune cells in people with fatty liver disease.

Longevity protein SIRT6 also protects against fatty liver and fatty liver disease
SIRT6 regulates fat metabolism by activating another protein called peroxisome proliferator-activated receptor alpha (PPAR-alpha).

Fresh insights could lead to new treatments for liver disease
The fight against liver disease could be helped by the discovery of cells that cause liver scarring.

Better methods needed for predicting risk of liver disease
While blood samples can reliably identify people with a low risk of developing severe liver disease, better methods are needed in primary care for identifying people in most need of care.

Lab-on-a-chip may help identify new treatments for liver disease
Investigators have developed a 'lab on a chip' technology that can simulate different levels of non-alcoholic fatty liver disease progression.

Read More: Liver Disease News and Liver Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.