Nav: Home

Real-time imaging uncovers mTORC1 dynamics

October 11, 2016

What do proteins and wild bears have in common? Just like tagging wild animals aims to allow researchers to observe and track their natural behaviour, molecular researchers use tags to track the minute movements of proteins in cells. Despite the difference in the size of the target, the challenge remains the same: how to tag the object without changing its usual behaviour.

For over ten years, this issue has held back research on understanding the dynamics of a key cellular sensor called mTORC1 (mammalian target of rapamycin complex 1), a multi-protein complex. mTORC1 is responsible for regulating cell growth in response to favourable or unfavourable conditions. In circumstances where the cell is experiencing limited nutrients, mTORC1 is inactive which stimulates the cell's reuse and recycle (autophagy) processes. When mTORC1 detects available nutrients, it switches on the appropriate synthesis pathway in the cell to make full use of them, for example, if amino acids (the building blocks of proteins) abound, mTORC1 will trigger protein synthesis. Previous research has found that inhibiting the mTOR subunit of the complex extends lifespan, indicating that mTOR is likely to be the most important regulator of ageing due to its role in governing cell turnover and growth.

Now, for the first time, researchers at the Babraham Institute have been able to successfully tag a protein in this complex to observe its intracellular movement in real time. The discovery of how the complex behaves modifies current thinking about mTORC1 activation and signalling and provides new tools to dissect the role of mTORC1 in governing cell growth. The research is published in the journal eLife today.

By engineering a fluorescently-tagged and active form of mTORC1 and using the Institute's live imaging capabilities, the researchers were able to track the time course of what happened to mTORC1 in 'starved' cells following the addition of amino acids, one of the nutrients measured by mTORC1. mTORC1 has different cellular locations depending on whether it is active or inactive. On activation, mTORC1 moves from the cell cytoplasm to attach to the surface of lysosomes, cellular membrane sacks which are responsible for digesting proteins and other cellular components. What was not known was how quickly this happened. The researchers found that the movement of mTORC1 to the lysosome membrane occurred within two minutes of amino acids being added to the cell media and that mTORC1 detaches again after about three to four minutes.

Dr Nicholas Ktistakis, group leader in the Institute's Signalling research programme and senior author on the paper, said: "An active tagged version of mTORC1 provides a significant new tool we can use to observe the real-time dynamics of mTORC1 and further probe the complexities of mTORC1 signalling. Discovering the speed of mTORC1 relocation to lysosomes was really astonishing and when we combine this with data showing the time period of mTOR kinase activity we can see that this requires a rethinking of our existing models and raises new questions."

In addition to labelling mTORC1, the researchers utilised the Institute's biological chemistry expertise to produce a fluorescently labelled amino acid (leucine). This is the first fluorescent reagent capable of activating mTORC1 and visible by microscopy. Using both fluorescently labelled mTORC1 and leucine allowed the real time observation of both amino acid entry to lysosomes and subsequent mTORC1 movement in the cell.

Dr Maria Manifava, senior researcher at the Babraham Institute and joint first author on the paper, said: "By providing a time-dependent activity pattern of mTORC1 in relation to its dynamic localisation, we found that there is a population of mTORC1 in the cell which is no longer on the lysosomes but nevertheless active. To explain this, we propose that the localisation of mTORC1 to the lysosomes somehow modifies it to maintain its activity even when it detaches again." Matthew Smith, a PhD student at the Babraham Institute at the time and joint first author on the paper, continued: "Our next steps are to identify the effect of mTORC1's interaction with the lysosome structure that enable it to maintain its activity after detaching. Knowing this will allow a more complete picture of the steps involved in amino acid sensing by mTORC1."
This research was funded by the Biotechnology and Biological Sciences Research Council who also strategically support the Babraham Institute. Dr Nicholas Ktistakis will present this work at the Institute's Ageing Cell conference on 27 & 28 March 2017.

Babraham Institute

Related Amino Acids Articles:

A unique amino acid for brain cancer therapy
Researchers discover potential application of amino acid taurine in photodynamic therapy for brain cancer.
Nickel: A greener route to fatty acids
Chemists designed a nickel catalyst that easily transforms petroleum feedstocks into valuable compounds like fatty acids.
Amino acids in diet could be key to starving cancer
Cutting out certain amino acids - the building blocks of proteins -- from the diet of mice slows tumor growth and prolongs survival, according to new research published in Nature.
How to brew high-value fatty acids with brewer's yeast
Researchers at Goethe University Frankfurt have succeeded in producing fatty acids in large quantities from sugar or waste containing sugar with the help of yeasts.
Diverse natural fatty acids follow 'Golden Mean'
Bioinformatics scientists at Friedrich Schiller University in Jena (Germany) have discovered that the number of theoretically possible fatty acids with the same chain length but different structures can be determined with the aid of the famous Fibonacci sequence.
Simple fats and amino acids to explain how life began
Life is a process that originated 3.5 billion years ago.
Newly revealed amino acid function could be used to boost antioxidant levels
A Japanese research team has become the first in the world to discover that 2-aminobutyric acid is closely involved in the metabolic regulation of the antioxidant glutathione, and that it can effectively raise levels of glutathione in the body when ingested.
An amino acid controls plants' breath
IBS plant scientists demonstrate that the amino acid L-methionine activates a calcium-channel regulating the opening and closing of tiny plant pores.
Genetic differences in amino acid metabolism are linked to a higher risk of diabetes
A study published today in the journal PLOS Medicine has identified the five genetic variants associated with higher levels of the branched-chain amino acids isoleucine, leucine and valine.
Withholding amino acid depletes blood stem cells, Stanford researchers say
A new study shows that a diet deficient in valine effectively depleted the blood stem cells in mice and made it possible to perform a blood stem cell transplantation on them.

Related Amino Acids Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".