Nav: Home

Achieving ultra-low friction without oil additives

October 11, 2016

Researchers at Georgia Institute of Technology have developed a new process for treating metal surfaces that has the potential to improve efficiency in piston engines and a range of other equipment.

The method improves the ability of metal surfaces to bond with oil, significantly reducing friction without special oil additives.

"About 50 percent of the mechanical energy losses in an internal combustion engine result from piston assembly friction. So if we can reduce the friction, we can save energy and reduce fuel and oil consumption," said Michael Varenberg, an assistant professor in Georgia Tech's George W. Woodruff School of Mechanical Engineering.

In the study, which was published Oct. 5 in the journal Tribology Letters, the researchers at Georgia Tech and Technion - Israel Institute of Technology tested treating the surface of cast iron blocks by blasting it with mixture of copper sulfide and aluminum oxide. The shot peening modified the surface chemically that changed how oil molecules bonded with the metal and led to a superior surface lubricity.

"We want oil molecules to be connected strongly to the surface. Traditionally this connection is created by putting additives in the oil," Varenberg said. "In this specific case, we shot peen the surface with a blend of alumina and copper sulfide particles. Making the surface more active chemically by deforming it allows for replacement reaction to form iron sulfide on top of the iron. And iron sulfides are known for very strong bonds with oil molecules."

Oil is the primary tool used to reduce the friction that occurs when two surfaces slide in contact. The new surface treatment results in an ultra-low friction coefficient of about 0.01 in a base oil environment, which is about 10 times less than a friction coefficient obtained on a reference untreated surface, the researchers reported.

"The reported result surpasses the performance of the best current commercial oils and is similar to the performance of lubricants formulated with tungsten disulfide-based nanoparticles, but critically, our process does not use any expensive nanostructured media," Varenberg said.

The method for reducing surface friction is flexible and similar results can be achieved using a variety of processes other than shot peening, such as lapping, honing, burnishing, laser shock peening, the researchers suggest. That would make the process even easier to adapt to a range of uses and industries. The researchers plan to continue to examine that fundamental functional principles and physicochemical mechanisms that caused the treatment to be so successful.

"This straightforward, scalable pathway to ultra-low friction opens new horizons for surface engineering, and it could significantly reduce energy losses on an industrial scale," Varenberg said. "Moreover, our finding may result in a paradigm shift in the art of lubrication and initiate a whole new direction in surface science and engineering due to the generality of the idea and a broad range of potential applications."
-end-
This work was supported by the Grand Technion Energy Program, the Carl E. Schustak Energy Research and Development Fund, and the New York Metropolitan Research Fund. This work was performed in part at the Georgia Tech Institute for Electronics and Nanotechnology, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation. Any conclusions or recommendations are those of the authors and do not necessarily represent the official views of the sponsoring organizations.

CITATION Michael Varenberg, Grigory Ryk, Alexander Yakhnis, Yuri Kligerman, Neha Kondekar, Matthew T. McDowell, "Mechano-Chemical Surface Modification with Cu2S: Inducing Superior Lubricity," (Tribology Letters, October 5, 2016). http://dx.doi.org/10.1007/s11249-016-0758-8

Georgia Institute of Technology

Related Iron Articles:

How nitrogen-fixing bacteria sense iron
New research reveals how nitrogen-fixing bacteria sense iron - an essential but deadly micronutrient.
Getting to the root of how plants tolerate too much iron
Salk scientists have found a major genetic regulator of iron tolerance, a gene called GSNOR.
Stressed plants must have iron under control
When land plants' nutrient availability dwindles, they have to respond to this stress.
Is a great iron fertilization experiment already underway?
Using a new, highly sensitive tracer for human-derived iron falling on the ocean, researchers led by the USF College of Marine Science say we have underestimated the iron we add to the ocean compared to natural sources.
High on iron? It stops anaemia but has a downside
A global study looking at the role that iron plays in 900 diseases has uncovered the impact of both low and high iron levels -- and the news is mixed.
Gold for iron nanocubes
Hybrid Au/Fe nanoparticles can grow in an unprecedentedly complex structure with a single-step fabrication method.
BU finds iron may not improve fertility
A new study led by Boston University School of Public Health (BUSPH) researchers finds that there is no consistent association between consuming iron and becoming pregnant.
Study confirms banded iron formations originated from oxidized iron
A new study by University of Alberta scientists shows that banded iron formations originated from oxidized iron, confirming the relevance and accuracy of existing models -- a finding of great importance to the geological community.
Iron volcanoes may have erupted on metal asteroids
Metallic asteroids are thought to have started out as blobs of molten iron floating in space.
study looks to iron from microbes for climate help
Distributing iron particles produced by bacteria could 'fertilize' microscopic ocean plants and ultimately lower atmospheric carbon levels, according to a new paper in Frontiers.
More Iron News and Iron Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.