Nav: Home

New study finds 'amplifier' helps make connections in the fetal brain

October 11, 2016

WASHINGTON (Oct. 11, 2016) - Fetal brains use a special amplifier in order to transmit signals, according to research published in the journal eLife by George Washington University's (GW) Matthew Colonnese, Ph.D. and Yasunobu Murata, Ph.D. Early neural connections are sparse, weak, and unreliable. This unique amplification circuit boosts weak inputs to ensure accurate and powerful information transfer in the developing brain.

"Our question is, what is the brain of the fetus doing? We know it's active, and we know it's generating spontaneous activity, but we also know the circuits are very weak," said Colonnese, professor of pharmacology and physiology and member of the Institute for Neuroscience at the GW School of Medicine and Health Sciences. "Brain activity in a pre-term infant is large - 10 times larger than that of an adult. At the same time, circuits have just ten percent of the connection of an adult. The question became how the activity gets through. That's when we started looking for amplifiers and through our research, identified one of these amplifiers."

Using an animal model, Colonnese and Murata looked at the cerebral cortex and thalamus, key processing areas of the brain, during development. They looked at visual pathways, which have similar activity patterns as humans. In adults, activity in the eye is transmitted to the thalamus, where it is then sent on to the cortex without amplification. There is also a feedback pathway from the cortex back to the thalamus, which is modulatory, and largely acts as a brake. During early brain development however, the feedback input from the cortex multiplies the retinal input to the thalamus instead of restraining it, resulting in an excitatory feedback loop that causes massive amplification of activity. The amplifier explains how the fetal brain continues to stay active despite weak synapses. While further research is needed, this study may explain the differences in seizures in the young and old, because in adults this brake is necessary to prevent runaway excitation which may cause epilepsy.

"The amplifier only lasts during the fetal period and then a brake comes on. This amplifier goes away after birth, but if it doesn't work or go away properly, does it cause disorders?" said Colonnese. "This is likely one of many unique circuits the fetal brain is using. Research on the fetal brain is so new, and there is so much we don't yet know - it's like going to the moon. More research is needed to learn about overall fetal brain development and the significance of this amplifier."

This study was supported by a grant from the National Eye Institute.
-end-
"An excitatory cortical feedback loop gates retinal wave transmission in thalamus" was published in eLife and is available at http://dx.doi.org/10.7554/eLife.18816.

Media: For the full study or to interview Dr. Colonnese, please contact Lisa Anderson at lisama2@gwu.edu or 202-994-3121.

About the GW School of Medicine and Health Sciences: Founded in 1824, the GW School of Medicine and Health Sciences (SMHS) was the first medical school in the nation's capital and is the 11th oldest in the country. Working together in our nation's capital, with integrity and resolve, the GW SMHS is committed to improving the health and well-being of our local, national and global communities. smhs.gwu.edu

George Washington University

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".