Nav: Home

Kent State professor studies how selfish genes cause male sterility in flowering plants

October 11, 2016

Why are plants often sterile when their parents are from different species? How do species remain separate entities in nature?

Andrea L. Case, Ph.D., associate professor in the Department of Biological Sciences in the College of Arts and Sciences at Kent State University, co-authored an article that may provide some answers to these basic questions in the Proceedings of the Royal Society B, which was recently published online.

In their article, "Selfish evolution of cytonuclear hybrid incompatibility in Mimulus", Case and her co-authors from the University of Montana (Findley R. Finseth, Camille M. Barr, and Lila Fishman) describe their use of genomic data to document natural selection on genes responsible for hybrid male sterility in Mimulus, commonly known as monkeyflowers. To read the full article, visit:

One of the ways that biologists can identify distinct species of animals and plants is to show that they cannot make viable or fertile offspring after they mate.

"Many closely related species, those that were recently members of a single species, have lost the ability to make viable or fertile offspring with each other," Case said. "The process of how that happens is still under investigation, and it's particularly important to figure out the genetic mechanisms for the evolution of reproductive incompatibilities between species."

The article also addresses the consequences of genetic conflict, which arises when one genetic element reduces the fitness of others in the same genome. Male sterility genes in plants have been predicted to cause genetic conflict between maternally inherited mitochondrial genes that aren't transmitted by males, and nuclear genes that are inherited from both males and females.

"Our results are consistent with the 'selfish' spread of a maternal mitochondrial male-sterility gene in a single population, followed by strong selection for nuclear suppressors that restore male fertility," Case said. "This is an example intragenomic conflict driving the evolution of selfish genes and suppressors within species, and it may often underlie sterility in hybrids between flowering plant species."

The specific genes that are in conflict in their study are those that plant breeders use to create new varieties of crops. According to Case, there is little data out there from non-crop plants like Mimulus that show how evolutionary forces like natural selection have acted on these genes in the past.

In the paper, the researchers explain how genes that cause male sterility in hybrids between two closely related plant species have evolved. They show that it was not by chance -- natural selection was involved-- and they show that natural selection was strong and direct, acting on the incompatible genes themselves. They show that the outcome of natural selection was the resolution of genetic conflict between a selfish male-sterility gene and its co-evolved suppressor.

"The genes we have identified as being involved in male sterility are ones that are ubiquitous in flowering plants, so the genetic mechanism we are studying might also be ubiquitous," Case said. "It may be a very common mechanism that helps maintains species as separate entities in nature."

Case spent the spring of 2015 conducting this research and analysis, on sabbatical, at the University of Montana followed by further analysis in 2016. While the data in this paper shows what has happened in a single population, future research will address if this population is unique or typical. They also want to know if any other elements in the genome are involved in the resolution of genetic conflict, and the potential consequences of conflict for other parts of the genome.
Photo captions: 1. Yellow monkeyflowers (Mimulus guttatus) at the base of Cone Peak in the Oregon Cascades, USA. Photo credit: Arpiar Saunders, used with permission.

2. Flowers of hybrid monkeyflowers (Mimulus guttatus x M. nasutus), dissected to show the morphology of the male sex organs (extending from the top of each flower). The flower on the left is from a male-fertile hybrid, right from a male-sterile hybrid. Photo credit: Andrea Case.

3. Deformed male sex organ from the flower of a male-sterile hybrid between Mimulus guttatus and M. nasutus, stained blue and viewed through a microscope. Photo credit: Camille Barr.

Media Contacts:

Jim Maxwell, 330-672-8028,

Kent State University

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".