Nav: Home

Designer brain receptors used in preclinical study to suppress cued cocaine seeking

October 11, 2016

Researchers at the Medical University of South Carolina (MUSC) have used viruses to infect neurons with genes that allow them to switch on brain receptors involved in suppressing addiction relapse. Results of these preclinical studies were published in the September 28th, 2016 issue of the Journal of Neuroscience. The technology, called designer receptors exclusively activated by designer drugs, or DREADDs, is one of the most promising gene therapies for the future treatment of addiction in humans.

The brains of people who use cocaine become hijacked by drug cues. Powerful memories are formed between these cues-such as the using environment and drug paraphernalia-and the dopamine flood that occurs from using the drug itself. In users trying to quit, these drug cues activate an intense desire to seek cocaine again.

Resistance to relapse is partly mediated in the ventromedial prefrontal cortex-the brain region slightly above and behind our eyes, where previously learned associations are broken. This region of the brain stores extinction memory, which works to suppress the emotional response to drug cues, according to Jamie Peters, Ph.D., Research Assistant Professor in the MUSC Department of Neuroscience.

"Extinction doesn't overwrite the original memory," explained Peters. "It just helps suppress the pathological component of the response."

Peters and her colleague Peter W. Kalivas, Ph.D., Chair of the MUSC Department of Neuroscience, wanted to know if the response to drug cues associated with the dopamine rush of cocaine could be suppressed when the extinction memory region was activated. To test their hypothesis, they obtained viruses carrying the DREADD gene from Bryan L. Roth, M.D., Ph.D., in the Department of Pharmacology at the University of North Carolina Chapel Hill. The DREADD technology is openly accessible to researchers around the world through the National Institutes of Mental Health Psychoactive Drug Screening Program, where Roth serves as director.

The viruses work by inserting the DREADD gene directly into the genome of cells, causing them to grow receptors on their surface that are normal except for a slight alteration. These receptors express a protein encoded by the DREADD gene that allows them to be activated by a single drug designed to bind that protein. In this case, the Peters lab infused a virus carrying a DREADD gene designed to change surface receptors on neurons. After the neurons were infected, they would fire in response to administration of the designer drug. Because the body's other cells had not been infected with the DREADD gene, they would remain unaffected.

"This new approach for treating drug addiction is exactly what is needed because it is targeted to a specific circuit in the brain regulating addiction," said Kalivas. "This may allow the circuit to be selectively regulated with minimum side effects on other circuits and brain functions."

The researchers allowed rats to self-administer cocaine by pressing one of two levers, one active and one inactive. Once a rat pressed the active lever, cocaine was delivered along with a brief audio tone and a pulse of light that would serve as the drug cues. After a series of daily cocaine exposure sessions, the rats had learned to associate the simple drug cues with cocaine availability. Then they were removed from the drug. Next a surgical technician infused virus carrying the DREADD gene directly into the rats' ventromedial prefrontal cortices. After two weeks of cocaine abstinence, the rats were placed back in front of the two levers in ten daily sessions, but this time the levers produced neither cues nor cocaine. The next day, rats were subjected to a relapse test where the cues were returned. Before testing, half of the rats were given designer drug and half were not. Next, rats underwent an additional relapse test where they were given a low dose of cocaine to trigger relapse.

The experiments worked. Rats that were given the designer drug relapsed less in the presence of drug reminder cues. However, when exposed to cocaine again, rats relapsed regardless of whether they were given the designer drug. In other words, Peters' hypothesis was correct: rats with activated extinction memories weren't as susceptible to relapse triggered by cocaine-associated cues but were still vulnerable when exposed to cocaine again. This meant that extinction memory retrieval reduced relapse triggered by reminder cues.

This study shows that it is possible to use this technology to target a small population of cells in the brain that is important for regulating addiction, thereby inhibiting the drive to relapse to addictive drug use. In the future, Peters hopes that safe and effective viruses of this kind can be infused into the brains of human addicts during neurosurgery. A person would simply take a pill to activate the extinction memory region of their brain, helping them to suppress the urge to seek out drug in the face of those reminder cues. Since extinction memory isn't as powerful as the emotional response to a drug, this strategy could work when paired with effective psychological counseling approaches such as cognitive behavioral therapy.

Clinicians interested in using DREADDs in humans will have to remain patient, however. DREADDs have to be designed to match drugs that suppress only memories of drug cues while leaving other memories unaffected. And the crystal structure of newer human-appropriate designer drugs bound with the special receptors is being actively investigated in order to visualize exactly how they might work some day in patients with cocaine addiction.

"Certainly within my lifetime I would expect to see these virus-mediated gene therapies start to be used in the brain, in a neurosurgical setting," said Peters. "You can envision a person ultimately taking a pill to activate this very specific part of his or her brain."

About MUSC

Founded in 1824 in Charleston, The Medical University of South Carolina is the oldest medical school in the South. Today, MUSC continues the tradition of excellence in education, research, and patient care. MUSC educates and trains more than 3,000 students and residents, and has nearly 13,000 employees, including approximately 1,500 faculty members. As the largest non-federal employer in Charleston, the university and its affiliates have collective annual budgets in excess of $2.2 billion. MUSC operates a 750-bed medical center, which includes a nationally recognized Children's Hospital, the Ashley River Tower (cardiovascular, digestive disease, and surgical oncology), Hollings Cancer Center (a National Cancer Institute designated center) Level I Trauma Center, and Institute of Psychiatry. For more information on academic information or clinical services, visit musc.edu. For more information on hospital patient services, visit muschealth.org.
-end-


Medical University of South Carolina

Related Cocaine Articles:

Cocaine addiction leads to build-up of iron in brain
Cocaine addiction may affect how the body processes iron, leading to a build-up of the mineral in the brain, according to new research from the University of Cambridge.
Potential new treatment for cocaine addiction
A team of researchers led by Cardiff University has discovered a promising new drug treatment for cocaine addiction.
Study using animal model provides clues to why cocaine is so addictive
Scientists at Wake Forest Baptist Medical Center are one step closer to understanding what causes cocaine to be so addictive.
Magnetic stimulation of the brain may help patients with cocaine addiction
Baltimore, MD Targeted magnetic pulses to the brain were shown to reduce craving and substance use in cocaine-addicted patients.
New insights on how cocaine changes the brain
The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published Nov.
UK awarded $6 million to further develop treatment for cocaine abuse
University of Kentucky College of Pharmacy Professor Chang-Guo Zhan, along with fellow UK Professors Fang Zheng and Sharon Walsh, and Professor Mei-Chuan Ko from Wake Forest University, recently received $6 million in funding over five years to further develop a potential treatment for cocaine abuse.
Cocaine addiction, craving and relapse
One of the major challenges of cocaine addiction is the high rate of relapse after periods of withdrawal and abstinence.
Which is most valuable: Gold, cocaine or rhino horn?
Elephants, rhinoceroses, hippopotamuses, gorillas and the majority of other very large animal species are threatened with extinction, an international team of scientists reported this month in the open-access online journal Science Advances.
Cocaine changes the brain and makes relapse more common in addicts
Cocaine use causes 'profound changes' in the brain that lead to an increased risk of relapse due to stress -- according to new research from the University of East Anglia.
WSU researchers see way cocaine hijacks memory
Washington State University researchers have found a mechanism in the brain that facilitates the pathologically powerful role of memory in drug addiction.

Related Cocaine Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...