Nav: Home

Running triggers production of a molecule that repairs the brain in animal models

October 11, 2016

Researchers at The Ottawa Hospital and the University of Ottawa have discovered that a molecule triggered by running can help repair certain kinds of brain damage in animal models. They found that this molecule, called VGF nerve growth factor, helps to heal the protective coating that surrounds and insulates nerve fibres. Their study, published in Cell Reports, could pave the way for new treatments for multiple sclerosis and other neurodegenerative disorders that involve damaged nerve insulation.

"We are excited by this discovery and now plan to uncover the molecular pathway that is responsible for the observed benefits of VGF," said Dr. Picketts, senior author of the paper and a senior scientist at The Ottawa Hospital and professor at the University of Ottawa. "What is clear is that VGF is important to kick-start healing in damaged areas of the brain."

The team made this discovery while studying mice genetically modified to have a small cerebellum, the part of the brain that controls balance and movement. These mice had trouble walking and lived only 25 to 40 days.

However, if these mice were given the opportunity to run freely on a wheel, they lived over 12 months, a more typical mouse lifespan. The running mice also gained more weight and acquired a better sense of balance compared to their sedentary siblings. However, they needed to keep exercising to maintain these benefits. If the running wheel was removed, their symptoms came back and they did not live as long.

Looking at their brains, the researchers found that the running mice gained significantly more insulation in their cerebellum compared to their sedentary siblings.

To find out why running was causing this insulation, the team looked for differences in gene expression between the running and sedentary mice and identified VGF as a prime candidate. VGF is one of the hundreds of molecules that muscles and the brain release into the body during exercise. It also has an anti-depressant effect that helps make exercise feel good.

When the research team used a non-replicating virus to introduce the VGF protein into the bloodstream of a sedentary mutant mouse, the effects were similar to having the mouse run - more insulation in the damaged area of the cerebellum, and fewer disease symptoms.

"We saw that the existing neurons became better insulated and more stable," said Dr. Matías Alvarez-Saavedra, the lead author on the paper. "This means that the unhealthy neurons worked better and the previously damaged circuits in the brain became stronger and more functional."

Dr. Alvarez-Saavedra obtained his PhD in Dr. Picketts' research group, and is currently a postdoctoral fellow at the New York University School of Medicine and the Howard Hughes Medical Institute.

"We need to do broader research to see whether this molecule can also be helpful in treating multiple sclerosis and other neurodegenerative diseases," said Dr. Picketts.
-end-
This study was funded by the Canadian Institutes of Health Research, with support from The Ottawa Hospital Foundation. The group has now received funding from the MS Society of Canada and the Canadian Partnership for Stroke Recovery to further investigate VGF. Dr. Picketts is also a member of the University of Ottawa Brain and Mind Research Institute. Dr. Alvarez-Saavedra is funded by a Pew Latin American Postdoctoral Fellowship in the Biomedical Sciences.

Full reference: Voluntary running triggers VGF-mediated oligodendrogenesis to prolong the lifespan of Snf2h-null ataxic mice. Matías Alvarez-Saavedra, Yves De Repentigny, Doo Yang, Ryan W. O'Meara, Keqin Yan, Lukas E. Hashem, Lemuel Racacho, lya Ioshikhes, Dennis E. Bulman, Robin J. Parks, Rashmi Kothary, and David J. Picketts. Cell Reports (2016), http://dx.doi.org/10.1016/j.celrep.2016.09.030. October 11, 2016.

About The Ottawa Hospital: Inspired by research. Driven by compassion. The Ottawa Hospital is one of Canada's largest learning and research hospitals with over 1,100 beds, approximately 12,000 staff and an annual budget of over $1.2 billion. Our focus on research and learning helps us develop new and innovative ways to treat patients and improve care. As a multi-campus hospital, affiliated with the University of Ottawa, we deliver specialized care to the eastern Ontario region, but our techniques and research discoveries are adopted around the world. We engage the community at all levels to support our vision for better patient care. See http://www.ohri.ca for more information about research at The Ottawa Hospital.

About the University of Ottawa: The University of Ottawa is home to over 50,000 students, faculty and staff, who live, work and study in both French and English. Our campus is a crossroads of cultures and ideas, where bold minds come together to inspire game-changing ideas. We are one of Canada's top 10 research universities--our professors and researchers explore new approaches to today's challenges. One of a handful of Canadian universities ranked among the top 200 in the world, we attract exceptional thinkers and welcome diverse perspectives from across the globe. http://www.uottawa.ca

Media Contact: Amelia Buchanan, Senior Communication Specialist, Ottawa Hospital Research Institute; ambuchanan@ohri.ca; Office: 613-798-5555 x 73687; Cell: 613-297-8315

Ottawa Hospital Research Institute

Related Multiple Sclerosis Articles:

New biomarkers of multiple sclerosis pathogenesis
Multiple sclerosis (MS) is a chronic debilitating inflammatory disease targeting the brain.
Using telemedicine to treat multiple sclerosis
Multiple sclerosis (MS) clinicians face continued challenges in optimizing neurological care, especially for people with advanced MS living in medically underserved communities.
Improving symptom tracking in multiple sclerosis
With a recent two-year, $833,000 grant from the US Department of Defense, kinesiology professor Richard van Emmerik and colleagues at the University of Massachusetts Amherst hope to eventually help an estimated 1 million people worldwide living with progressive multiple sclerosis by creating an improved diagnostic test for this form of the disease, which is characterized by a steady decrease in nervous system function.
An antibody-based drug for multiple sclerosis
Inserm Unit U919, directed by Professor Denis Vivien has developed an antibody with potential therapeutic effects against multiple sclerosis.
Four new risk genes associated with multiple sclerosis discovered
Scientists of the Technical University of Munich and the Max Planck Institute of Psychiatry have identified four new risk genes that are altered in German patients with multiple sclerosis.
PET detects neuroinflammation in multiple sclerosis
The triggers of autoimmune inflammation in multiple sclerosis (MS) have eluded scientists for many years, but molecular imaging is bringing researchers closer to identifying them, while providing a means of evaluating next-generation therapies for MS, say researchers introducing a study at the 2016 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging.
Scientists find genetic cause of multiple sclerosis
Researchers have discovered a rare genetic mutation that makes it probable that a person will develop multiple sclerosis (MS).
ANKRD55: A new gene involved in Multiple Sclerosis is discovered
The Ikerbasque researcher Koen Vandenbroeck, who heads the Neurogenomiks laboratory which reports to the Achucarro centre and the UPV/EHU-University of the Basque Country, together with other national and international groups, has shown that a genetic variant in the 5q11 chromosome, which is associated with susceptibility to developing multiple sclerosis, greatly regulates a gene known as ANKRD55.
Children with and without multiple sclerosis have differences in gut bacteria
In a recent study, children with multiple sclerosis had differences in the abundance of specific gut bacteria than children without the disease.
Rituximab is superior to fingolimod for certain patients with multiple sclerosis
A new study indicates that rituximab is more effective than fingolimod for preventing relapses in patients with highly active multiple sclerosis switching from treatment with natalizumab.

Related Multiple Sclerosis Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...