Nav: Home

Atomic-scale MRI holds promise for new drug discovery

October 11, 2016

Researchers at the University of Melbourne have developed a way to radically miniaturise a Magnetic Resonance Imaging (MRI) machine using atomic-scale quantum computer technology.

Capable of imaging the structure of a single bio-molecule, the new system would overcome significant technological challenges and provide an important new tool for biotechnology and drug discovery.

The work was published today in Nature Communications, and was led by Prof Lloyd Hollenberg at the University of Melbourne, working closely with researchers at the ARC Centre of Excellence for Quantum Computation and Communication Technology (CQC2T) to design the quantum molecular microscope.

The team propose the use of atomic-sized quantum bits (qubits) normally associated with the development of quantum computers, but here would be employed as highly sensitive quantum sensors to image the individual atoms in a bio-molecule.

"Determining the structure of bio-molecules such as proteins can often be a barrier to the development of novel drugs," said Prof. Lloyd Hollenberg, Thomas Baker Chair in Physical Biosciences at the University of Melbourne.

"By using quantum sensing to image individual atoms in a bio-molecule, we hope to overcome several issues in conventional biomolecule imaging, " Prof Hollenberg said.

State-of-the-art techniques create a crystal of the molecule to be studied and use X-ray diffraction to determine the molecules' average structure. However, the crystalisation and averaging processes may lead to important information being lost. Also, not all bio-molecules can be crystalised - particularly proteins associated with cell membranes, which are critical in the development of new drugs.

"Our system is specifically designed to use a quantum bit as a nano-MRI machine to image the structure of a single protein molecule in their native hydrated environments," added Prof Hollenberg.

"As part of our research in quantum computing we have also been working on the nearer-term applications of atomic-based quantum technology investigating the use of a single quantum bit as a highly sensitive magnetic field sensor," says Prof. Hollenberg.

Atomic qubits can be made to exist in two states at the same time, a disturbingly strange property that not only underpins the power of a quantum computer, but also the sensitivity of qubits as nano-sensors.

"In a conventional MRI machine large magnets set up a field gradient in all three directions to create 3D images; in our system we use the natural magnetic properties of a single atomic qubit," says University of Melbourne PhD researcher Mr. Viktor Perunicic, who was the lead author on the paper.

"The system would be fabricated on-chip, and by carefully controlling the quantum state of the qubit probe as it interacts with the atoms in the target molecule, we can extract information about the positions of atoms by periodically measuring the qubit probe and thus create an image of the molecule's structure." says Mr. Peruncic.

"The system could be constructed and tested relatively quickly using diamond-based qubits. However, to capture really high resolution molecular images in the longer term, CQC2T's silicon-based qubits might have the advantage because they have very long quantum coherence," said Prof. Hollenberg.

"The construction of such a quantum MRI machine for single molecule microscopy could revolutionise how we view biological processes at the molecular level, and could lead to the development of new biotechnology and a range of clinical applications."
-end-


University of Melbourne

Related Quantum Computer Articles:

Quantum nanoscope
Researchers have studied how light can be used to 'see' the quantum nature of an electronic material.
Testing quantum field theory in a quantum simulator
Quantum field theories are often hard to verify in experiments.
Looking for the quantum frontier
Researchers have developed a new theoretical framework to identify computations that occupy the 'quantum frontier' -- the boundary at which problems become impossible for today's computers and can only be solved by a quantum computer.
First ever blueprint unveiled to construct a large scale quantum computer
An international team, led by a scientist from the University of Sussex, have today unveiled the first practical blueprint for how to build a quantum computer, the most powerful computer on Earth.
New quantum states for better quantum memories
How can quantum information be stored as long as possible?
Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge
Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.
USC quantum computing researchers reduce quantum information processing errors
USC Viterbi School of Engineering scientists found a new method to reduce the heating errors that have hindered quantum computing.
Computer scientists find way to make all that glitters more realistic in computer graphics
Iron Man's suit. Captain America's shield. The Batmobile. These all could look a lot more realistic thanks to a new algorithm developed by a team of US computer graphics experts.
Particle zoo in a quantum computer
Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics.
Quantum satellite device tests technology for global quantum network
Researchers at the National University of Singapore and University of Strathclyde, UK, report first data from a satellite that is testing technology for a global quantum network.

Related Quantum Computer Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".