Nav: Home

New study reveals major racial bias in leading genomics databases

October 11, 2016

A national group of researchers has confirmed for the first time that two of the top genomic databases, which are in wide use today by clinical geneticists, reflect a measurable bias toward genetic data based on European ancestry over that of African ancestry. The results were published in the latest issue of Nature Communications.

The research team was led by Timothy O'Connor, assistant professor at the University of Maryland School of Medicine (UM SOM) and a faculty member of the school's Institute for Genomic Sciences. He is also a specialist in the areas of Human Evolutionary Genomics, Genotype/Phenotype Architecture, and Computational Biology. Other members of the study included researchers from UM SOM's Department of Medicine and the Program in Personalized and Genomic Medicine, and from the Johns Hopkins University, the University of Colorado, and the Henry Ford Health System.

This deficit in African ancestry genomic data was identified during an 18-month long study conducted under the auspices of the larger Consortium on Asthma among African-Ancestry Populations in the Americas (CAAPA). To create a benchmark for comparison to current database results, the researchers first created the largest, high-quality non-European genome data set ever assembled. Genetic samples of 642 subjects from the African diaspora, including representatives from US, African, and Afro-Caribbean populations, were sequenced in order to produce this unique data set. Then, when compared with current clinical genomic databases, researchers found a clearer preference in those databases for European genetic variants over non-European variants.

"By better understanding the important role of African ancestry in clinical genetics, we can begin to actually identify a disease that has been forgotten or is not part of an individual's self-identification," says O'Connor. "For example, if an African-American patient walks in the door, he might have 20 percent European ancestry, while another might have 20 percent African ancestry. That difference will dramatically change how many variants are found in their genome, and what disease risks they might encounter. That's why we need to expand these databases to include a broader range of ancestries, in order to produce more accurate medical genetic diagnoses."

O'Connor also points out that this shortfall in genomic data also comes at a financial cost. "If you translate the review time it takes for each one of these variants to be sequenced in terms of cost in a clinical setting, you're looking at a difference of about $1,000 more to analyze an African American's genome than a European American's genome--and you still receive less accurate results," he notes.

"This groundbreaking research by Dr. O'Connor and his team clearly underscores the need for greater diversity in today's genomic databases," says UM SOM Dean E. Albert Reece, MD, PhD, MBA, who is also Vice President of Medical Affairs at the University of Maryland and the John Z. and Akiko Bowers Distinguished Professor at UM SOM. "By applying the genetic ancestry data of all major racial backgrounds, we can perform more precise and cost-effective clinical diagnoses that benefit patients and physicians alike."
-end-
About the University of Maryland School of Medicine

The University of Maryland School of Medicine was chartered in 1807 and is the first public medical school in the United States and continues today as an innovative leader in accelerating innovation and discovery in medicine. The School of Medicine is the founding school of the University of Maryland and is an integral part of the 11-campus University System of Maryland. Located on the University of Maryland's Baltimore campus, the School of Medicine works closely with the University of Maryland Medical Center and Medical System to provide a research-intensive, academic and clinically based education. With 43 academic departments, centers and institutes, and a faculty of more than 3,000 physicians and research scientists and more than $400 million in extramural funding, the School is regarded as one of the leading biomedical research institutions in the U.S. with top-tier faculty and programs in cancer, brain science, surgery and transplantation, trauma and emergency medicine, vaccine development and human genomics, among other centers of excellence. The School is not only concerned with the health of the citizens of Maryland and the nation, but also has a global presence, with research and treatment facilities in more than 35 countries around the world. medschool.umaryland.edu

University of Maryland School of Medicine

Related Genome Articles:

A close look into the barley genome
An international consortium, with the participation of the Helmholtz Zentrum München, Plant Genome and Systems Biology Department (PGSB), has published methodologically significant data on the barley genome.
Barley genome sequenced
Looking for a better beer or single malt Scotch whiskey?
From Genome Research: Pathogen demonstrates genome flexibility in cystic fibrosis
Chronic lung infections can be devastating for patients with cystic fibrosis (CF), and infection by Burkholderia cenocepacia, one of the most common species found in cystic fibrosis patients, is often antibiotic resistant.
A three-dimensional map of the genome
Cells face a daunting task. They have to neatly pack a several meter-long thread of genetic material into a nucleus that measures only five micrometers across.
Rhino genome results
A study by San Diego Zoo Global reveals that the prospects for recovery of the critically endangered northern white rhinoceros -- of which only three individuals remain -- will reside with the genetic resources that have been banked at San Diego Zoo Global's Frozen Zoo®.
Science and legal experts debate future uses and impact of human genome editing in Gender & the Genome
Precise, economical genome editing tools such as CRISPR have made it possible to make targeted changes in genes, which could be applied to human embryos to correct mutations, prevent disease, or alter traits.
Genome: It's all about architecture
How do pathogens such as bacteria or parasites manage to hide from their host's immune system?
Accelerating genome analysis
An international team of scientists, led by researchers from A*STAR's Genome Institute of Singapore and the Bioinformatics Institute, have developed SIFT 4G (SIFT for Genomes) -- a software that can lead to faster genome analysis.
Packaging and unpacking of the genome
Single-cell techniques have been used to investigate histone replacement and chromatin remodeling in developing oocytes.
The astounding genome of the dinoflagellate
Dinoflagellates live free-floating in the ocean or symbiotically with corals, serving up -- or as -- lunch to a host of mollusks, tiny fish and coral species.

Related Genome Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".