Nav: Home

Catalyst from the microwave

October 11, 2016

Lunch out of the microwave usually doesn't taste nearly as good as a meal made in a conventional oven. This difference in quality is reversed for graphitic carbon nitride, a catalyst used for generating hydrogen from sunlight. Treatment of a precursor material with microwaves delivers a significantly more crystalline product than conventional thermolysis in an oven. As scientists report in the journal Angewandte Chemie, a catalyst produced in this way is significantly more effective in the generation of hydrogen.

Photocatalytic water splitting, in which sunlight is used to split water into hydrogen and oxygen is an environmentally friendly method for generating hydrogen for various applications, including fuel cells. However, the success of this method depends on the efficiency of the photocatalyst. Graphitic carbon nitride (g-C(3)N(3)) is a highly promising candidate. This material consists of six-membered rings made of carbon and nitrogen atoms. Groups of three rings are fused together at the edges (triazine groups), and these are bound into a two-dimensional layer by means of an additional nitrogen atom. This layered structure of six-membered rings is reminiscent of graphite. Unlike graphite, however, g-C(3)N(3) is a semiconductor.

The more perfect the crystal lattice of the g-C(3)N(3), the more effectively it can capture energy form the sun and convert it into hydrogen, a transportable and useful energy carrier; defects in the crystal lattice compromise this efficiency. Researchers at Anhui University (Hefei, China), Harbin Normal University (Harbin, China), and the Georgia Institute of Technology (Atlanta, USA) have now developed a new method for producing g-C(3)N(3) that results in a highly crystalline product with remarkably few defects.

The team led by Yupeng Yuan and Zhiqun Lin first produced an aggregate made of two different starting materials in a solvent. These materials, melamine and cyanuric acid, consist of six-membered rings of carbon and nitrogen atoms. The particular side-groups on these molecules allow them to form hydrogen bridge bonds to each other. This results in extensive two-dimensional aggregates in which the two molecules alternate. This puts the building blocks into the right structure for subsequent bonding of the rings to form g-C(3)N(3), which reduces the likelihood of defects in the lattice.

Instead of bonding the aggregates together by heating in an electric oven (thermolysis), the researchers elected to treat them with microwaves. This process is not only much faster (16 minutes was sufficient), it also produced a material that has twice the photocatalytic activity in the generation of hydrogen. This results from the significantly improved crystallinity that is obtained because the microwave radiation excites the nitrogen-rich molecules, causing intense rotation, friction, and collision.
About the Author

Dr. Yupeng Yuan is an associate professor at Anhui University of China. His research focuses on exploring new photocatalysts that can work actively and durably for H2 generation upon exposure to light.


Related Hydrogen Articles:

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.
Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.
Observing hydrogen's effects in metal
Microscopy technique could help researchers design safer reactor vessels or hydrogen storage tanks.
The 'Batman' in hydrogen fuel cells
In a study published in Nature on Jan. 31, researchers at the University of Science and Technology of China (USTC) report advances in the development of hydrogen fuel cells that could increase its application in vehicles, especially in extreme temperatures like cold winters.
Paving the way for more efficient hydrogen cars
Hydrogen-powered vehicles emit only water vapor from their tailpipes, offering a cleaner alternative to fossil-fuel-based transportation.
More Hydrogen News and Hydrogen Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...